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ABSTRACT

The primary objective of the work presented in this dissertation was to evaluate the
change patterns, i.e., a gradual change known as the trend, and an abrupt change known as the
shift, of multiple hydro-climatological variables, namely, streamflow, snow water equivalent
(SWE), temperature, precipitation, and potential evapotranspiration (PET), in association with
the large-scale oceanic-atmospheric climate signals. Moreover, both observed datasets and
modeled simulations were used to evaluate such change patterns to assess the efficacy of the
modeled datasets in emulating the observed trends and shifts under the influence of uncertainties
and inconsistencies. A secondary objective of this study was to utilize the detected change
patterns in designing data-driven prediction models, e.g., artificial neural networks (ANN5s),
support vector machines (SVMs), and Gaussian process regression (GPR) models, coupled with
data pre-processing techniques, e.g., principal component analysis (PCA) and wavelet transforms
(WTs). The study was not solely limited to the hydrologic regions of the conterminous United
States (U.S.); rather it was extended to include an analysis of northern India to appraise the

differences in the spatiotemporal variation on a broader scale.

A task was designed to investigate the significant spatiotemporal variations in continental
US streamflow patterns as a response to large-scale climate signals across multiple spectral
bands (SBs). Using non-parametric (long-term) trend and (abrupt) shift detection tests, coupled
with discrete wavelet transform, 237 unimpaired streamflow stations were analyzed over a study
period of 62 years (1951 to 2012), looking at the water year and seasonal data, along with three
discrete SBs of two, four, and eight years. Wavelet coherence analysis, derived from continuous
wavelet transform, determined the association between the regional streamflow patterns and

three large-scale climate signals, i.e., El Nifio Southern Oscillation (ENSO), Pacific Decadal
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Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO), across continuous SBs
ranging from two to 16 years. The results indicated significant positive (negative) trends and
shifts in the northeastern and north-central (northwestern) regions with an increase in the number
of stations as the SB durations increased. The spatiotemporal association between regional
streamflow and climate signals varied significantly (from no correlation, Rn2 ~ 0, to perfect
correlation, Rn? ~ 1.0) even amongst adjacent regions. Among the climate signals, ENSO showed
the highest association (Ra ~ 1.0), having a consistent phase relationship with regional
streamflow patterns, especially in the higher SBs. PDO (with the least influence among the three
signals) and AMO showed stronger associations, in the lower SBs. These results may help
explain the teleconnections between the climate signals and the US streamflow variations across
multiple SBs, which may lead to improved regional flow regulations. The comparison among
several data-driven models, e.g., ANN, SVM, and GPR models, preceded by PCA and WT,
produced comparable results with significant accuracy (with R? above 0.90) in short-term

prediction of streamflow.

Later, the correlations between the western U.S. snow water equivalent (SWE) and the
two major oceanic-atmospheric indices originating from the Pacific Ocean, namely, ENSO and
PDO, were evaluated using continuous wavelet transform and its derivatives. Snow Telemetry
(SNOTEL) data for 1 April SWE from 323 sites (out of which 258 are in six hydrologic regions)
were obtained for a study period of 56 years (1961-2016). The results showed that ENSO had a
much higher influence than PDO throughout the western U.S. SWE across the study period. Both
ENSO and PDO showed a higher correlation with SWE at multiple timescale bands across
different time intervals, although significant intervals in the higher timescales were of longer

duration. ENSO showed a higher correlation in the 10-to-16-year band across the entire study

v
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period as well as in the lower timescales. PDO showed a higher correlation below the 4-year
band. The relative phase relationship suggested that ENSO led SWE, with certain lags, while
both were moving in the same direction in many instances. The lag-response behavior of SWE
and PDO was not found to be uniform. Regional analyses, based on the western U.S. hydrologic
regions, suggested significant variation across adjacent regions in terms of their correlation with
ENSO/PDO. Association with ENSO was also observed to be higher compared to PDO among
the regions. Regions close to the ocean and at lower elevation showed higher correlation

compared to the inland regions with higher elevation.

The influence of ENSO on the north Indian temperature, precipitation, and PET change
patterns was evaluated during the monsoon season across the last century. Trends and shifts in
146 districts were assessed using non-parametric statistical tests. To quantify their temporal
variation, the concept of apportionment entropy was applied to both the annual and seasonal
scales. Results suggest that the El Nifio years played a greater role in causing hydro-
climatological changes compared to the La Nifia or neutral years. El Nifio was more influential in
causing shifts compared to trends. For certain districts, a phase change in ENSO reversed the
trend/shift direction. The all-year (century-wide) analysis suggested that the vast majority of the
districts experienced significant decreasing trends/shifts in temperature and PET. However,
precipitation experienced both increasing and decreasing trends/shifts based on the location of
the districts. Entropy results suggested a lower apportionment of precipitation compared to the
other variables, indicating an intermittent deviation of precipitation pattern from the generic
trend. The findings may help understand the effects of ENSO on hydro-climatological variables
during the monsoon season. Practitioners may find the results useful, as monsoon, among the

Indian seasons, experience the largest climate extremes.
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A final task was designed that evaluated Coupled Model Intercomparison Project 5
(CMIP5) simulation models’ ability to capture the observed trends under the influence of shifts
and persistence in their data distributions. A total of 41 temperature and 25 precipitation CMIP5
simulation models across 22 grid cells (2.5° x 2.5° squares) within the Colorado River Basin
were analyzed and compared against the Climate Research Unit Time Series (CRU-TS) observed
datasets over a study period of 104 years (from 1901 to 2004). Both the model simulations and
observations were tested for shifts, and the time series before and after the shifts were analyzed
separately for trend detection and quantification. Effects of several types of persistence were
accounted for prior to both the trend and shift detection tests. The mean significant shift points
(SPs) of the CMIPS5 temperature models across the grid cells were found to be within a narrower
range (between 1960 and 1970) compared to the CRU-TS observed SPs (between 1930 and
1980). Precipitation time series, especially the CRU-TS dataset, had a lack of significant SPs,
which led to an inconsistency between the models and observations since the numbers of grid
cells with a significant SP were not comparable. The modeled CMIP5 temperature trends, under
the influence of shifts and persistence, were able to match the observed trends quite satisfactorily

(within the same order and consistent direction).

Unlike the temperature models, the CMIP5 precipitation models detected the SPs earlier
than the observed SPs found in the CRU-TS data. The direction (as well as the magnitude) of
trends, before and after significant shifts, were found to be inconsistent between the modeled
simulations and observed precipitation data. Shifts, based on their direction, were found to either
strengthen or neutralize pre-existing trends both in the model simulations as well as in the

observations.
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The results also suggest that the temperature and precipitation data distributions were
sensitive to different types of persistence. Such sensitivity was found to be consistent between
the modeled and observed datasets. The study detected certain biases in the CMIPS5 models in
detecting the SPs (a tendency of detecting shifts earlier or later than the observed shifts) and also
in quantifying the trends (overestimating the trend slopes). Such insights may be helpful in

evaluating the efficacy of the simulation models in capturing observed trends under uncertainties

and natural variabilities.

vil

www.manharaa.com




ACKNOWLEDGMENT

There are many people to thank for their constant support, advice, and assistance when it
comes to formulating and producing a work of this extent. I would like to take this opportunity to
express my deepest gratitude to my advisor, Dr. Sajjad Ahmad, for providing me guidance and
cooperation throughout my graduate study. I am utterly grateful to Dr. Ajay Kalra for being my
research mentor and for providing me with amazing ideas and resources to solve problems that I
never could solve by myself. I would like to thank my committee Dr. David James, Dr. Haroon
Stephen, Dr. Daniel Gerrity, and Dr. Ashok Singh for their advice and encouragement
throughout my research. I would also like to acknowledge the US-Pakistan Center for Advanced

Studies in Water (USPCAS-W) for partially funding this work.

My family deserves a special mention for their constant support and well wishes. I would
like to thank my father, Mr. Kazi Mosaddeq Ali, and my mother, Ms. Kazi Fowzia Yasmin, for
having faith in me and for being patient with me while I struggled in many phases of my life. My
elder brother, Mr. Kazi Ali Tahzeeb, who has always been an idol for me while I was growing
up. My sister-in-law, Ms. Sadia Parveen, who has been a friend and an elder sister to me. My
uncle, Mr. Kazi Zahid Hasan, for encouraging me in so many ways. Many thanks goes to my
wife Farha who took loads off my shoulders and have given me much joy to cherish. My two
guinea pigs, Nikkie and Luna, and my cat, Lichu, who are no less than my own children. All of
them have filled my heart with lots of happiness and love. I love them so much and I am truly

fortunate to have them in my life.

viii

www.manaraa.com



DEDICATION

I dedicate this research to all the animals who are mercilessly treated and cruelly slaughtered for

mankind’s own enjoyment. There is so little I can do to help them.

ix

www.manharaa.com




TABLE OF CONTENTS

ABSTRACT ...ttt ettt ettt ettt et e st e b et et e st es e et e s s et ene et en e st eseese s enseneeneeneeseeneas iii
ACKNOWLEDGMENT .......ocoiiiiiiieiettetetet ettt ettt sae et sbesee st enseeseesaesaessennas viii
DEDICATION ..ottt ettt ettt ete e te st et et e e st es e eneesessesaeesessensenteseaseeseesenseseenseneeneas ix
TABLE OF CONTENTS ...ttt ettt sttt et sbeeaeensenseeteeneeneas X
LIST OF TABLES ...ttt ettt ettt et esbe s e sbeeseanaeeseeneennes Xiv
LIST OF FIGURES ..ottt st b e ettt sbe e et be e eseessenseeaeenee Xvii
LIST OF ABBREVIATIONS .....cutitiitieieieete ettt ettt ettt ettt se e eseesse e sseenne s e xxiil
CHAPTER 1: INTRODUCTION .....ocuiiiiiiiesieieieeee ettt sttt naenes 1
1.1. Research Back@round ............cooieriiriiiiiiniieeseee ettt 1
1.2. ReSEArCh IMOtIVALION ......eeuiiiiiieiiieiieeie ettt ettt ettt et et e et eens e s e e nseenee 4
1.3. RESEATCH ODJECTIVES ...cuvieuiieiiieiieesie ettt ettt ettt et e e eite et e et eenbeenaeeeeeneeenne 7
1.4, RESEATCH TaASKS....uuieuiieiiieiiieiie ettt ettt ettt et e e e bt e st esss e neenees 15

CHAPTER 2: MULTI-SCALE SPATIOTEMPORAL CHANGE ANALY SIS AND SHORT-
TERM PREDICTION OF THE CONTERMINOUS U.S. STREAMFLOW IN RESPONSE TO

LARGE SCALE CLIMATE VARIABILITY ...ooittiiiiititeieit ettt st 17
2.1 INEEOAUCTION ...ttt ettt ettt et et sbe e b b e e 17
2.2. Study Area and Data .........cocouiiiiiiiiiieie e et nnae s 22
2.3 MEEROMS ...ttt b ettt b e 24

2.3.1. Trend and Shift eSS ......ccuievierierierie ettt 24
2.3.2. Wavelet transformms ........o.oeviiiiirie et ettt sttt st 25
2.3.3. Wavelet artificial neural network (WANN) modeling .........cccceevvrevveenieenceeenieeenenn 27
24 RESUIES ...ttt ettt ettt bttt ettt ettt b e 28
2.4.1. Trends and shifts in water years and SEaSONS..........cceerveeerureerieeniieeriienrieneeeneeeeneeens 28
2.4.2. Concurrence of Shifts and the Climate Signals ...........cccoevveevciieniiiniieieeeie e 32

X

www.manaraa.com



2.4.3. Correlation between regional streamflow and climate signals .........ccccccceceeeienencnne. 32

2.4.4. Short-term prediction using data-driven models............cceervierienieniiniienierieeieeee 35
2.5, DDISCUSSION ..tieuiieeeieeeeiteeeiiteetieeteeetteestaeestteeenseeesseeessseesnseesnseesnsaeeaseaensseanssaennsessnseesnseeanneenn 41
2.6, CONCIUSIONS ....ieetiitiiie ettt ettt ettt et e e st e s atesabesnbeentesnbesnteeabeeaseeessesasesnsesnnesssennee 45

CHAPTER 3: MULTI-SCALE CORRELATION BETWEEN THE WESTERN U.S. SNOW
WATER EQUIVALENT AND LARGE-SCALE CLIMATE VARIABILITY OF THE PACIFIC

OCEAN .ottt et ste e et e e st e et e et e stt e e teereesaeeesseesbeasseesseesseeseerseenseenseenseeseeesaenseas 47
R T O 212 016 1017 5 ) o USSR PTR 47
3.2. Study Area and Data ..........cc.eeiiieiiiieiie e et e et ae e eare e 50
I LY (5111076 [0) 10 oy USSP 53

3.3.1. Observation of Variance in the Data............ccceviiriiniiiiiiiieiieeeeeee e 53
3.3.2. Detection of Covariance between Time-Series.........ccveruerruieriierieenienieniieeeeesieeeeas 54
3.3.3. Quantification of correlation between time-SerieS........ccuveeevrieeeiieeeecirieeeeeieeeeeriee e 54
34 RESULLS ...ttt ettt et eh ettt ettt a e et e et et e e s be et e enteenbeenneenen 54
3.4.1. Variability (High Power) of Data in SWE1 and ENSO/PDO........ccccccovvviviieniiennn. 55
3.4.2. Covariance (High Common Power) between SWE1 and ENSO/PDO ...................... 57
3.4.3. Coherency (Significant Correlation) between SWE1 and ENSO/PDO...................... 60
3.4.4. Coherency (Significant Correlation) between regional SWE and ENSO/PDO.......... 61
3.5, DISCUSSION ..ttt eiieeite et ete et eeie et et et et est e te e bt eeebesstesabeentesabeenbeenseenseenseebeenseenseenseenseas 65
3.6. CONCIUSIONS.....veiieiieiiieiie ettt ettt ettt et e bt e et esse e bb et e enteenseenseesseenseansean 70

CHAPTER 4: SPATIOTEMPORAL TREND, SHIFT, AND ENTROPY ANALYSES OF
TEMPERATURE, PRECIPITATION, AND POTENTIAL EVAPORATION OF NORTH

INDIAN MONSOON DURING THE ENSO PHASES .......oooiiieeeeeceeeeeeee e 72
o I 013 (06 18 18 o) o BTSSP 72
4.2. Study Area and Data........cc.ceoiiiiiiiiiieeee e et eans 78
e TR (14110 4 0] 1o T 2SSOSR 82

4.3.1. Trend and Shift TeSS ....c.ueeriieiiieiiie ettt eae e esaaeensseeensee s 82

4.3.2. ENITOPY TOSL...uiiiiiiiieciiie ettt e erte e e tee e ettt e e st ee e ssetbeeeesbaeeesnseeeessseeeesnssaasanes 83

4.4, Results and DISCUSSION .......cceiiuiiiiiiiiieeeiiie e eiiie e ettt eeeteeee et eeeeaateeeetareeeestaeaessrseeeessressesnnnes 85

4.4.1. Temperature Change Patterns ...........cccveviiriiiiieiieieeie et 86
X1

www.manaraa.com



4.4.2. Precipitation Change Patterns ...........cccvvviiriiiiieiiiieeie e 92

4.4.3. Potential Evapotranspiration Change Patterns...........cccoeceviirrieniieniienieneeneeceeee 98
B 2 111 () ) PR 100
4.5, CONCIUSIONS ...ttt eiie e ettt ettt et et ettt et e e bt et e s aeesaeebeeneesseasseesabeebeenseenseenseas 105

CHAPTER 5: COMPARISON OF TRENDS AND SHIFTS IN THE OBSERVED AND
MODELED (CMIP5) TEMPERATURE AND PRECIPITATION PATTERNS OF THE

COLORADO RIVER BASIN UNDER SHIFT AND PERSISTENCE.........cccccoenieieren 107
B T 631 (04 L To7 51 ) s SR 107
5.2. Study Area and Data ..........cceeeiiiiiiieiie et 110
R T\, (511 1 1o (0] Lo o TSRS 112
S RESULLS ...ttt et ettt ettt et et eat ettt eat e nb e et e et et e enneenee 113

5.4.1. Shift-Trends in Temperature Data ............cccoeeoieeiiiiiiieeeiee e 113
5.4.2. Shift-Trends in Precipitation Data ............ccceevieeiiiiiiieiieeeeee e 116
5.5 DDISCUSSION ..ot etie et ettt et et et et e et e sabeentesateenteeabesnseenbeenseenseenseenseenseenseenns 121
5.6, CONCIUSIONS ...uuviieeiieiie et ettt ettt e et e ettt e e tte e st e e snaeesas e s steeenseeenseeensaesanseeesseeennseennseennees 125

CHAPTER 6: CONTRIBUTIONS AND RECOMMENDATIONS.......coeoiiieieieeeeerees 127
0.1, SUIMIMATY ..ottt et e e e e e e e eate e e e et ee e s s ntte e e nste e e nsteeeanseaeesseeeesnneens 127
0.2. CONIIDULIONS. ....evteeeee ettt ettt ettt et et et e ea b eesteeaseenseenseesbeenssenseesnsesnsesnseentenns 132
T T 91 01 1510 ) s USSR 135
6.4. Recommendations for future Worki .............cccoveiiiiiiiiiiiiiccec e 137

APPENDICES ...ttt st et te et e st e see s ae e st aeenbeesbeenseesseensesnseenseenseas 139
APPENAIX 1ttt ettt e e e te e et e e ta e e be e e ab e e eabaeenbeeebaeeetaeenraeenaraennns 139
F N 00157 114§D G s USROS 139
APPENAIX 2.B .o et e et e ettt e e e e aaeeaeaeaaeanees 140
APPENAIX 2.C .ottt e et e et et e e te e e b b e e aa e et e e et be e nbeeentaeeareeeaaeannes 141
APPENAIX 2.D 1ttt et e et e e et e e teeenteeenreeennaeennee 146
APPENAIX 2.F oottt e b ettt e e ae e ertaeebeaenaaeennns 154
F N 070157 1 ¢ b G OSSPSR 167
F N 00157 1 14§D QUSSP 168

Xii

www.manaraa.com



ADPPCIAIX 5.ttt ettt ettt et a e bt et et e bt e bt e bt e beenneesaeens 169

REFERENCES ...ttt et sttt 175

CURRICULUM VITAE ..ot s 192

xiil

www.manharaa.com




LIST OF TABLES

Table 3. 1: The number of SNOTEL sites in each hydrologic region along with the average
elevation (in ft.) of the sites, the standard deviation of the elevation (in ft.) in a particular
region, and the percentage of variance explained by the first principal component (PC1) for

TRAL TEEIOM. .eeiiiie ettt et et e et ee e et e e be et e et e e e be e bt ebeeneesaeenneas 52

Table 4. 1: The Number of districts (out of a total of 146) with significant increasing or
decreasing trends and shifts in temperature, precipitation, and potential evapotranspiration

during the different ENSO Phases. ........cocuieiiiiiiiiieieeieese ettt 91

Table 4. 2: The Number of districts (out of a total of 146) with significant increasing or
decreasing trends and shifts in temperature, precipitation, and potential evapotranspiration

during monsoon and at each of the monsoonal months. ............ccocveeiiiiniiiieniie e 91

Table 4. 3: The range of all-year Theil-Sen approach (TSA) slopes of temperature, precipitation,

and potential evapotranspiration during monsoon and at each of the monsoonal months. .... 97

Table 4. 4: The location in time of the earliest and latest significant shift of temperature,

precipitation, potential evapOtranSPITAtION. ......ecveeuerierierieeteete et erie e ete e sbe e eneeeieeneees 97

Table 4. 5: The range of annual and seasonal apportionment entropy of temperature,
precipitation, and potential evapotranspiration across the study period of 102 years and along

FOUTr MONTRS OF MNONSOOMN. <. .ot e e e e e e e e e e e e e e eeaeeens 104

Table A2.B 1: Number of stations with significant positive (Pos.) and negative (Neg.) trends
under the Mann-Kendall (MK) test in water-year and seasonal data along with their

AECOMPOSITIONS. ..eueviiiiieiiieeetie ettt ettt e et eeeteeeteeesteeeeteeesseeeasaesaeeesaeenssaesseesssesensseensseessneenns 140

Table A2.B 2: Number of stations with significant positive (Pos.) and negative (Neg.) shifts

under the Pettitt’s test in water year and seasonal data along with their decompositions. ... 140

X1V

www.manaraa.com



Table A2.D 1: Percentage of variance explained by the first principal component (PC1) obtained

from the principal component analysis (PCA) of the selected regions..........ccccevvvevvenennee. 150

Table A2.E 1: Comparison among various support vector machine (SVM) and Gaussian process
regression (GPR) models during the training and validation phase (aggregated result of the
K-fold cross validation with 5 folds) for the Mid-Atlantic (MA) region. ...........cccueeeueenee. 163

Table A2.E 2: Comparison among various support vector machine (SVM) and Gaussian process
regression (GPR) models during the training and validation phase (aggregated result of the
K-fold cross validation with 5 folds) for the Missouri (MO) region...........ccceccevveeereeenennee. 163

Table A2.E 3: Comparison among various support vector machine (SVM) and Gaussian process
regression (GPR) models during the training and validation phase (aggregated result of the

K-fold cross validation with 5 folds) for the Pacific Northwest (PN) region. .................... 164

Table A2.E 4: Comparison among various learning algorithms during the testing phase (unseen

data) for the Mid-Atlantic (MA) TEZION. ......ccueeeiiiiiie ettt et eee e 165

Table A2.E 5: Comparison among various learning algorithms during the testing phase (unseen

data) for the MisSOUri (MO) TEZION. ......eerueieriieetieeeieeee et e et e eeeeseee e e e stbeesnseeenneesaneenns 166

Table A2.E 6: Comparison among various learning algorithms during the testing phase (unseen

data) for the Pacific Northwest (PN) T€ZION. .....ccevieiiirieniiiieeiee e 167
Table A4. 1: Names and numbers of the individual districts in each of the states. .................... 168
Table AS. 1: List of CMIPS temperature and precipitation models used in the study. .............. 169

Table AS. 2: Shift-Trend results of the CMIP5 temperature models across the grid cells of the
Upper and Lower Colorado River Basins. ...........ccoccveerieeiiieniieesieee e 171

XV

www.manaraa.com



Table AS. 3: Shift-Trend results of the CRU-TS temperature data across the grid cells of the
Upper and Lower Colorado River Basins (UCRB and LCRB, respectively)..........ccccuenee. 172

Table AS. 4: Shift-Trend results of the CMIPS5 precipitation models across the grid cells of the
Upper and Lower Colorado River Basins (URCB and LCRB, respectively).......c..cccceeueenee 173

Table AS. 5: Shift-Trend results of the CRU-TS precipitation data across the grid cells of the
Upper and Lower Colorado River Basins (URCB and LCRB, respectively)...........ccceeue.e. 174

Xvi

www.manharaa.com




LIST OF FIGURES

Figure 2. 1: (Left) Locations of 237 unimpaired streamflow stations analyzed in the study across

the coNtINENTA] UNITEA STALES. .oeeeeeeneeee ettt e e e e e e e e e e e e e e e e aaaeeens 23

Figure 2. 2: Location of stations with significant trends (1* row) and shifts (2" row), under the

MK and Pettitt’s test, respectively, in the original water year and its DSs.........c.cceceveeeene 30

Figure 2. 3: Wavelet coherence spectra between regional streamflow of (1% row) New England,
(2" row) Mid-Atlantic, (3™ row) Great Lakes, and (4™ row) Ohio and the climate signals of
(1% column) ENSO, (2™ column) PDO, and (3™ column) AMO. .........cccoeooveveeeneeererreennn. 31

Figure 2. 4: Wavelet coherence spectra between regional streamflow of (1% row) Upper
Mississippi, (2™ row) Souris-Red-Rainy, (3™ row) Missouri, and (4™ row) Pacific Northwest

and the climate signals of (1% column) ENSO, (2" column) PDO, and (3™ column) AMO. 34

Figure 2. 5: Comparison among model performances during the testing phase (unseen data) with
quadratic support vector machine, Matern 5/2 Gaussian process regression, and artificial
neural network model with the Bayesian regularization backpropagation algorithm for the

Mid-Atlantics (IMA) TEEIOM. c..eouveeiieiieiieteeteeie et et et e e ee et e eteesteetesateentesnsesseeeneenseenseens 38

Figure 2. 6: Comparison among model performances during the testing phase (unseen data) with
quadratic support vector machine, Matern 5/2 Gaussian process regression, and artificial
neural network model with the Bayesian regularization backpropagation algorithm for the

MiSSOUIT (MO) TEZION. ...vieuiiieiieeeiiieeiie et et ee ettt ete et e e eetteessbeessseesssaesssaeensaeesseeennseeenseeennes 39

Figure 2. 7: Comparison among model performances during the testing phase (unseen data) with
quadratic support vector machine, Matern 5/2 Gaussian process regression, and artificial
neural network model with the cyclical order weight/bias training algorithm for the Pacific

NOTTRWESt (PIN) TEZIOM. 1.ttt sttt ettt et e st e st e saeesneeeneesneesnseenee 40

xXvii

www.manaraa.com



Figure 3. 1: (Bottom left) Map showing states of the western U.S. and the 323 SNOTEL stations
selected fOr this STUAY......ccviiiiiiiiie et re e et e e eeabeeeene 51

Figure 3. 2: Standardized time series, wavelet power spectrum, and global wavelet power
spectrum of a) SWEI, b) ENSO, ¢) PDO1, and d) PDO2. Red (blue) represents stronger

(WEAKET) POWET. ..eeureeeiiieeeiieeiie ettt e ettt ee e ettt et e et ee et eesaeeessaeesseesseesneeesnseeensseesnseesnseeensaeennes 56

Figure 3. 3: Cross wavelet spectrum between a) SWEI and ENSO and b) SWEI and PDOI.
Wavelet coherence spectrum between ¢) SWEI and ENSO and d) SWE1 and PDOI........... 59

Figure 3. 4: Wavelet coherence spectrum between regional SWE and ENSO for a) Pacific
Northwest, b) Great Basin, ¢) Upper Colorado, d) California, ¢) Lower Colorado, and f) Rio
GTANAC. ...ttt ettt ettt et eat e e et et e b e bt en st e st e bt e st e st e eae e st e s be e e enteenbeentean 62

Figure 3. 5: Wavelet coherence spectrum between regional SWE and PDO1 for a) Pacific
Northwest, b) Great Basin, c) Upper Colorado, d) California, ) Lower Colorado, and f) Rio
GIANAE. ...t ettt ettt et e bbbt et sh e bbb et eat e e et 64

Figure 4. 1: Map showing the selected states representing North India and the constituent
districts (data for the gray-shaded district in Himachal Pradesh were unavailable)............... 80

Figure 4. 2: Plot showing the variation of El Niflo Southern Oscillation (ENSO, Nifio 3.4) index

over the current StUAY PEriod. ........couiiiiiiiiiie e ae e e 81

Figure 4. 3: Maps showing the spatial distributions of districts with significant trends in the
monsoon season under the MK test for temperature, precipitation, and potential
evapotranspiration in the (a) El Nifio, (b) La Nifia, (c¢) non-El Nifio, and (d) non-La Nifia
JBATS. +.utteeeuuteeeeutteeeatetee e tttee e aete e e s e tee e nteeeeaneteeeaanteeeanteeeanteeeenteeeentteeeanteeeeaateeeeasaeeeennreeeann 89

Figure 4. 4: Maps showing the spatial distributions of districts with significant shifts in the

monsoon season under the Pettitt’s test for temperature, precipitation, and potential

xviii

www.manaraa.com



evapotranspiration in the (a) El Nifio, (b) La Nifia, (c¢) non-El Nifio, and (d) non-La Nifia
WEATS. 1eeuvteeuetesuteeetteeuteeestte e ettt e st e e ae e e teeea bt e eab e e at e e e a bt e eh bt e ea bt e bt e e eh et ent b e e eab e e e beeehteennbeeennteeeaeeen 90

Figure 4. 5: Maps showing the spatial distributions of districts with significant trends under the
MK test for temperature, precipitation, and potential evapotranspiration in (a) monsoon and

the monsoonal months of (b) June, (c) July, (d) August, and (e) September. ........................ 95

Figure 4. 6: Maps showing the spatial distributions of districts with significant shifts under the
Pettitt’s test for temperature, precipitation, and potential evapotranspiration in (a) monsoon

and the monsoonal months of (b) June, (c) July, (d) August, and (e) September................... 96

Figure 4. 7: (Top) Maps showing the spatial distribution of the annual and seasonal
apportionment entropy for (a) temperature, (b) precipitation, and (c) potential

EVAPOLTANSPITALION. ..eeevtieiieeeiieeeeteesteeeteeeeteeesteessateeseeestseesnseessseeeseeesseeensaessseeensseesnssesnseeenns 103

Figure 5. 1: (Left) An example showing the effect of a shift point (SP) on trend analysis. The
first (blue) and second (orange) samples (drawn from normal distributions), both with a

sample size of 50, have a mean of 50 and 55, respectively, with a variance of 5. ............... 111

Figure 5. 2: Plots showing the shift points (SPs) in the CMIP5 and CRU-TS temperature (a and
b) and precipitation (c and d) data across the grid cells with (orange) and without (blue) the
trend-free-pre-whitening (TFPW).......ooouiiiiiiiiieee e 117

Figure 5. 3: Box plots showing the distribution of the Theil-Sen approach (TSA) trend slopes
across the CMIP5 (a and b) and CRU-TS (c and d) temperature data before and after a
significant shift at each of the selected grid cells. ........ccccoeviiriiieniiiniie e, 120

Figure 5. 4: As in Figure 5.3, but for precipitation data. For visual comparison, grid cells without

a significant SP, at p < 0.10, in (d), were infilled with zero slopes (no trend), as shown by

UNTIIEA SYMDOIS. ..ottt sttt et e et eeeaae e e ensee s 122

Xix

www.manaraa.com



Figure A2.C 1: Location of stations with significant trends under the MK test for the seasonal
data and their DISS. ......cooiiiiiiii e 143

Figure A2.C 2: Location of the stations with significant shifts under the Pettitt’s test for the
seasonal data and their DSs........oocooiiiiii e 145

Figure A2.D 1: Number of stations with significant shifts in water year and its DSs................ 147

Figure A2.D 2: (1% row) Location of stations with significant shifts coinciding with the PDO
warm (left) and cold (right) years, in conjunction with the ENSO (EI Nifio or La Nifia) years.

Figure A2.D 3: Standardized time series, continuous wavelet power spectrum, global wavelet
spectrum, and three-to-six-year-scale average time-series of (a) ENSO, (b) PDO, and (c)

AMO. o e 151

Figure A2.D 4: Standardized time series, continuous wavelet power spectrum, global wavelet
spectrum, and three-to-six-year-scale average time-series (1% row, left to right) New England
(NE), Mid-Atlantic (MA), Great Lakes (GL), Ohio (OH), (2" row, left to right) Upper
Mississippi (UMS), Souris-Red-Rainy (SRR), Missouri (MO), and Pacific Northwest (PN).

Figure A2.E 1: Principal component analyses (PCA) of the (a) Mid-Atlantic (MA), (b) Missouri

(MO), and (c) Pacific Northwest (PN) r€ZI0N. ......cccceeriieriieiiinierieriierie e 154

Figure A2.E 2: Effect of hidden neurons on the model performance for the (a) Mid-Atlantic
(MA), (b) Missouri (MO), and (c) Pacific Northwest (PN) region. .........ccceceevverveenenne 155

Figure A2.E 3: Screen dump of the optimized NARX model from MATLAB 2018a for the (a)
Mid-Atlantic (MA), (b) Missouri, and (c) Pacific Northwest region. .........cc.cceevveeenenn. 156

XX

www.manaraa.com



Figure A2.E 4: (1 row) Model fitting, (2" row) error histogram, and the best validation
performance of the WANN model (training and validation) for the (a) Mid-Atlantic
(MA), (b) Missouri (MO), and (c) Pacific Northwest region. ...........ccceevevrienivericennnne. 157

Figure A2.E 5: Model fitting (training and validation) of the K-fold cross-validation (5 folds as
shown in a through e) for the Mid-Atlantic (MA) T€ZION. .......cccveerveeriieriieeieeeiee e 158

Figure A2.E 6: Error histogram (training and validation) of the K-fold cross-validation (5 folds
as shown in a through e) for the Mid-Atlantic (MA) r€gion..........ccceecvveevveencieenieeeneeens 158

Figure A2.E 7: Best validation performance (training and validation) of the K-fold cross-
validation (5 folds as shown in a through e) for the Mid-Atlantic (MA) region. ........... 159

Figure A2.E 8: Model fitting (training and validation) of the K-fold cross-validation (5 folds as
shown in a through e) for the Missouri (MO) r€ZI0N.........cecververreeriieiieneee e 159

Figure A2.E 9: Error histogram (training and validation) of the K-fold cross-validation (5 folds
as shown in a through e) for the Missouri (MO) T€ZION. .......cccvveeiuieerieeriieiiieerie e 160

Figure A2.E 10: Best validation performance (training and validation) of the K-fold cross-
validation (5 folds as shown in a through e) for the Missouri (MO) region. .................. 160

Figure A2.E 11: Model fitting (training and validation) of the K-fold cross-validation (5 folds as
shown in a through e) for the Pacific Northwest (PN) region. ..........cccceevvvervenvenvennnne 161

Figure A2.E 12: Error histogram (training and validation) of the K-fold cross-validation (5 folds
as shown in a through e) for the Pacific Northwest (PN) region. .........cccceevverveeveennenns 161

Figure A2.E 13: Best validation performance (training and validation) of the K-fold cross-
validation (5 folds as shown in a through e) for the Pacific Northwest (PN) region...... 162

xxi

www.manaraa.com



Figure AS. 1: Temperature (a and b) and precipitation (¢ and d) anomalies of the CMIP5
simulation models (in terms of multi-model averages) and CRU-TS observations across the

study period for each of the grid CellS.........ccoeviiiiriiiiiiieee e 170

xxii

www.manharaa.com




LIST OF ABBREVIATIONS

AC - Approximation Coefficient
AE. - Annual Apportionment Entropy
AE; - Seasonal Apportionment Entropy
AMO - Atlantic Multi-Decadal Oscillation
ANN - Artificial Neural Network
AR - Assessment Report
AWR - Arkansas-White-Red
CA - California
CMIP5 - Coupled Model Intercomparison Project Phase 5
COI - Cone of Influence
CRB - Colorado River Basin
CRU-TS - Climate Research Unit Time Series
CS - Continuous Scale
CWT - Continuous Wavelet Transform
DC - Detail Coefficients
DIJF - December-January-February

XXiil

www.manharaa.com




DS - Discrete Scale

DWT - Discrete Wavelet Transform
ENSO - El Nino Southern Oscillation
FT - Fourier Transform
GB - Great Basin
GL - Great Lakes
GPR - Gaussian Process Regression
HCDN - Hydro-Climatic Data Network
IMD - India Meteorological Department
10D - Indian Ocean Dipole
IPCC - Intergovernmental Panel on Climate Change
ISMR - Indian Summer Monsoon Rainfall
JISAO - Joint Institute for the Study of the Atmosphere and Ocean
LC/LCO - Lower Colorado
LCRB - Lower Colorado River Basin
LMS - Lower Mississippi
LTP - Long-Term Persistence
XX1V

www.manharaa.com




MA

MK

MK1

MK?2

MK3

MK4

MO

MRA

NE

NOAA

NRCS

OH

PCl1

PCA

PDO

Mid-Atlantic

Mann-Kendall

Original MK Test

Modified MK Test with TFPW — accounts for STP (Lag-1

Autocorrelation)

Modified MK Test — accounts for all the Significant

Autocorrelation Structures

Modified MK Test — accounts for LTP (Hurst Phenomenon)

Missouri

Multi-Resolution Analysis

New England

National Oceanic and Atmospheric Administration

Natural Resources Conservation Service

Ohio

First Principal Component

Principal Component Analysis

Pacific Decadal Oscillation

XXV

www.manharaa.com



PET

PN

RG

R,

SAG

SB

SNOTEL

SRS

SST

STP

SVM

SWE

TFPW

N

TSA

TXG

U.S.

Potential Evapotranspiration

Pacific Northwest

Rio Grande

Wavelet Squared Coherency

South Atlantic-Gulf

Spectral Band

Snow Telemetry

Souris-Red-Rainy

Sea Surface Temperature

Short Term Persistence

Support Vector Machine

Snow Water Equivalent

Trend-Free-Pre-Whitening

Tennessee

Theil-Sen Approach

Texas-Gulf

United States

XXVi

www.manharaa.com



uc/uco

UCRB

UMS

USGS

WANN

WT

WTC

XWT

Upper Colorado

Upper Colorado River Basin

Upper Mississippi

United States Geological Survey

Wavelet Artificial Neural Network

Wavelet Transform

Wavelet Coherency

Cross Wavelet Transform

XxXvil

www.manharaa.com



CHAPTER 1: INTRODUCTION

1.1. Research Background

Climate warming has affected hydrologic processes in various ways — one of them
involves changes in the behavior and intensification of the hydrologic cycle (Durdu, 2010). The
adverse consequences of these changes have increased under the changing climate, as the rapid
increase in population stresses limited water resources (Wu et al., 2013). A detailed description
of such adversities can be found in the assessment reports (AR5 and AR6) of the
Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2014 and 2019). Water managers
have expressed concerns regarding the aftermath associated with access to fresh water as a
response to the change in climate (Dawadi and Ahmad, 2013; Kandissounon et al., 2018). In a
study of global and continental flow behaviors in relation to temperature increase by Labat et al.
(2004), climate change was found to have a severe impact on North American streams. Studies
indicate a considerable change in the intensity of flow behavior across the United States (U.S.),
especially in the last century (U.S. EPA, 2012). As a consequence of the increasing temperature,
flow regimes of the northern rivers in the U.S. have experienced major changes (Boyer et al.,
2010). Hence, evaluating the change in flow behavior, along with other hydrologic variables, has
become crucial to determining the effects of climate variability and change on limited water
resources (Birsan et al., 2005). Changes in the intensity and frequency of flow events can
potentially endanger critical infrastructures and the natural environment (Burn et al., 2010).
Besides restricting access to potable water for future generations, with the escalating growth in
the energy sector, the challenge becomes even more critical for water managers (Melesse et al.,

2011; Bukhary et al., 2018). Therefore, quantification of streamflow change behavior across the
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U.S. can be of utmost interest for a safe and sustainable future. A more recent approach focuses
on the integration of multiple non-parametric methods to render better results, not only in terms
of detection of change patterns but also to predict their behavior using data-driven models (Ahn
and Palmer, 2015; Belayneh et al., 2016; Tiwari and Adamowski, 2017). Studies suggest that
application of state-of-the-art machine learning techniques (intelligent models) can significantly
increase the accuracy of hydro-climatological models’ prediction (Tiwari and Adamowski,
2017). Coupling of pre-processing techniques, e.g., principal component analysis (PCA) and
wavelet transforms (WTs), with intelligent models has also been found to increase the accuracy

of time-series forecasting (Belayneh et al., 2016).

Among the various hydro-climatological variables, snow water equivalent (SWE) has
been used as a common measurement of the snowpack. According to the Natural Resources
Conservation Service (NRCS), SWE refers to the amount of water that is “contained within the
snowpack”. SWE can be thought of as the theoretical depth of water resulting from an
instantaneous melting of the entire snowpack. Hence, snowpack in terms of SWE is considered a
vital source of runoff in the water supply system across North America (Hunter et al., 2006;
McCabe and Dettinger, 2002). The relative contributions of snowpack to water yield are much
greater in the mountainous regions of the western U.S. than many other regions of the country. In
these regions, approximately 50%-70% of the annual precipitation falls as snow, and is stored
during the winter as snowpack (Palmer, 1988; Serreze et al., 1999); eventually, it affects the
runoff of the succeeding seasons. The beginning of April is the time when snow courses attain
maximum SWE. The 1 April SWE is used extensively in the western U.S. as an estimate to
forecast the spring-summer runoff, and ultimately can be used to predict the annual runoff

behavior in the surrounding regions. Understanding the relationships among the factors
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influencing SWE could be beneficial to forecasters and water managers dealing with critical

infrastructure management and irrigation practices (Hunter et al., 2006).

Studies on extreme climate events, i.e., droughts and floods, across the world, have found
that such extremes are likely to be associated with the anomalies in zonal sea surface temperature
(SST) fluctuations observed in the oceans. In turn, these fluctuations, coupled with the changes
in global and regional atmospheric pressure systems, formation of surface winds, and moisture
sources & evaporative demand, cause severe changes in the temperature and precipitation
patterns (Diffenbaugh et al., 2015; Seager et al., 2015). Studies also suggest that these extremes
are likely being aggravated by global warming (Williams et al., 2015; Yoon et al., 2015). The
recent California drought has been of great interest to many climate researchers, (e.g., Griffin
and Anchukaitis, 2014; Robeson, 2015). A study by Wei et al. (2016) identified major
atmospheric circulation patterns affecting precipitation in California. However, the authors
indicated that the contributions from the various components of the hydrologic cycle are yet to
be properly understood. As a result, besides analyzing SST anomalies and precipitation patterns,
recent studies have incorporated hydro-climatological variables like moisture sources,
evaporative demand, and temperature in order to understand these climate extremes more
thoroughly (Shukla et al., 2015; Pathak et al., 2016; Wei et al., 2016). In addition, various
combinations of these variables have been found to show significantly different and sometimes
inverse correlations with certain climate extremes. A few cases — for example, lower moisture
with higher temperature — found to affect the extremes even more severely (Shukla et al., 2015).
Hence, quantifying the changes in various hydro-climatological variables as a response to large-
scale oceanic-atmospheric climate signals has become a significantly important topic of research

for regional water managers and predictive climate data modelers.
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1.2. Research Motivation

Studies show that changes in streamflow in the U.S. have experienced significant
variations depending on the type of flow measurement, e.g., low flow, moderate flow, and peak
flow (McCabe and Wolock, 2002). The variations were also found to be significant across
different regions (Groisman et al., 2001) and at different temporal scales, e.g., annual and
seasonal flows (Small et al., 2006). Studies also suggest that many of the traditional trend
detection tests may not be resilient against nonlinearity (McBean and Motiee, 2006). Hence,
those tests are often coupled with other analytical tools that are capable of dealing with nonlinear
trends (Nalley et al., 2012), since such trends are relatively frequent in hydro-climatological data
distributions. Over the past few decades, wavelet transforms (WTs), which can be either discrete
or continuous in nature, have been used as an analytical tool in several studies that involved
feature detection in frequency components (Partal and Kii¢iik, 2006). Discrete wavelet transform
(DWT), more precisely multi-resolution analysis (MRA), a derivation from DWT, has been used
for spectral analysis in signal processing with the ability to decompose a signal into a set of high-
to low-frequency components, referred to as spectral bands (SBs) in the following sections,
which can assist in the analyses to detect the underlying features. A classification of streamflow
into distinct hydro-climatic categories was provided by Smith et al. (1998) using DWT.
Coulibaly and Burn (2004) explored the dynamic link between different climate signals and
streamflow in the Northern Hemisphere by using continuous wavelet transform (CWT). The new
WT analyses methods used in the field of hydrology have been reviewed and explained by Labat
(2005). Pagano and Garen (2004) studied the western U.S. streamflow and suggested the use of
WT for time-series analysis across multiple SBs for a better understanding of the less frequent

events. Kiiclik and Agiralioglu (2006) suggested the use of WT as a better feature detection
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technique compared to classical methods, e.g., Fourier transform (FT). Bayazit and Aksoy
(2001), Drago and Boxall (2002), and Gaucherel (2002) also explored the use of WTs (both
CWT and DWT) on nonstationary hydro-meteorological data at multiple temporal scales and
recommended the WT approach over the traditional FT or derivatives of FT. Based on the
documented literature, it was found that WT serves as a robust analytical tool in evaluating the
change in hydro-climatological data. To explore the coupling of DWT and CWT, on a
continental scale, to determine the association between large-scale oceanic-atmospheric climate
signals across multiple temporal resolutions, and to utilize the detected associations in predictive
models, was considered a major motivation of the study. Studies suggest that application of state-
of-the-art machine learning techniques (intelligent models) can significantly increase the
accuracy of hydro-climatological models’ prediction (Tiwari and Adamowski, 2017). Coupling
of pre-processing techniques, e.g., PCA and WT, with intelligent models has also been found to
increase the accuracy of time-series forecasting (Belayneh et al., 2016). Hence, this study also

tested the efficacy of several data-driven models preceded by PCA and WT.

As with studies dealing with snow derived data, besides analyzing the direct influence of
climate on the western U.S. snowpack, studies have also examined the role of major climate
indices on the hydrology of the western United States (Carrier et al., 2016; Kahya and Dracup,
1993). The El Nifio Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO),
both resulting from the Pacific Ocean, are considered to be two of the major large-scale oceanic-
atmospheric climate signals that affect the western U.S. hydrology (Barnett et al., 1999; Beebee
and Manga, 2004). Shifts in pressure cell locations and changes in their intensities cause trade
winds to get stronger or weaker. This results in changes in the locations and velocities of oceanic

currents — both of these cause upwelling of colder water from the bottom of the ocean, and move
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warmer ocean-surface-water in specific directions, for example, east or west near the equator in
the case of ENSO. Hence, SST fluctuations in multiple locations of the Pacific Ocean are
initiated. The variations in pressure cells, coupled with the SST fluctuations, affect the direction,
movement, and productivity of the storm tracks by affecting rates of oceanic evaporation and
atmospheric moisture content. ENSO, a natural cycle observed in the eastern Pacific Ocean with
a periodicity of two to seven years, alternates between two distinct phases, El Nifio (positive or
warm phase) and La Nifia (negative or cold phase) (Redmond and Koch, 1991). PDO, which
occurs on a timescale of 25 to 50 years, originates from the North Pacific Ocean, has a larger
zone of influence compared to ENSO (Trenberth and Fasullo, 2007). Similar to ENSO, PDO also
varies between warm and cold phases. Studies observing climate indices have also emphasized
the teleconnection between the oceanic climate systems and the global hydrologic processes
(Coscarelli et al., 2013; Sagarika et al., 2016). SST fluctuation alters the availability of moisture
from the oceanic surface currents and eventually affects the formation of storm systems. Hence,
SST fluctuations have the potential to influence hydro-climatological variables such as
precipitation, snowpack, streamflow, runoff, and soil moisture. As a result, quantification of the
associations between climate signals originating from the Pacific Ocean and the western U.S.
SWE across multiple temporal resolutions was considered a major motivation of the study, since

such an approach has not been adopted with snow derived data.

Outside the U.S. region, more specifically in the Indian sub-continent, the India
Meteorological Department has observed and recorded monsoon patterns for several decades and
has developed multiple stochastic models to forecast the initiation, recession, and strength of the
Indian Summer Monsoon Rainfall (ISMR). Out of the many different factors affecting ISMR,

ENSO has been considered to be one of the most significant large-scale forces that influence the
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behavior of ISMR (Ju and Slingo, 1995; Kumar et al., 1999). As mentioned earlier, ENSO is a
natural cycle originated from the tropical Pacific with two distinct phases. It is represented by an
index, which records the SST fluctuations originating from the strengthening and weakening of
the trade winds (Tamaddun et al., 2017a). Each phase of ENSO can last from a few months to a
year, and they occur every two to seven years. From 1950 to 2012, ISMR was found to be above
average or around average in almost all the La Nifia years (negative or cold phase). Contrarily,
five of the most prominent droughts in India during that period coincided with the El Nifio years
(positive or warm phase) (Kumar et al., 2006). A monsoon followed by El Nifio does not
necessarily result in poor rainfall all the time; however, as studies suggest, there might be other
climate and weather factors, e.g., the extent of Himalayan/Eurasian snow, which influences the
circulation of monsoon (Kumar et al., 1999). Studies have also suggested that other
complementary factors to ENSO may affect ISMR, e.g., the Indian Ocean Dipole, complex
coupling and dynamics of multiple variables, and variations in heat flux over different land
masses (Webster and Yang, 1992; Ashok et al., 2001; Wang et al., 2005). Therefore, providing
an in-depth analysis of the change patterns in multiple hydro-climatological variables of India
during the monsoon season as a response to the phases of ENSO was considered a major

motivation of the study.

1.3. Research Objectives

The primary objective of the work presented in this dissertation was to evaluate the
change patterns, i.e., a gradual change known as the trend, and an abrupt change known as the
shift, of multiple hydro-climatological variables, namely, streamflow, snow water equivalent
(SWE), temperature, precipitation, and potential evapotranspiration (PET), in association with

the large-scale oceanic-atmospheric climate signals. Moreover, both datasets and modeled

7
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simulations were used to evaluate such change patterns to assess the efficacy of the modeled
datasets in emulating the observed trends and shifts under the influence of uncertainties and
inconsistencies. A secondary objective was to utilize the detected change patterns in designing
data-driven prediction models, e.g., artificial neural networks (ANNs), support vector machines
(SVMs), and Gaussian process regression (GPR) models, coupled with data pre-processing
techniques, e.g., PCA and WT. The study was not solely limited to the hydrologic regions of the
conterminous U.S.; rather it was extended to include an analysis of northern India to appraise the
differences in the spatiotemporal variation on a broader scale. To attain the aforementioned

objectives, the study was divided into four distinct tasks.

The first task detected the spatiotemporal trend and shift patterns of the conterminous
U.S. streamflow across multiple frequency bands. Detection of change patterns across the
frequency bands was expected to provide greater insight into the temporal variation of the
streamflow patterns. Later, the changes in streamflow (along with their frequency bands) were
associated with three large-scale oceanic-atmospheric climate signals, namely ENSO, PDO, and
Atlantic Multi-decadal Oscillation (AMO). Later in this task, data-driven models were tested,
preceded by PCA and WT, to evaluate the confidence in such models while predicting short-term

streamflow behavior.

The second task detected the multi-resolution spatiotemporal association between the
western U.S. SWE and the large-scale oceanic-atmospheric climate signals originating from the
Pacific Ocean, i.e., ENSO and PDO. Since both these signals originate from the Pacific Ocean,
which is relatively in closer vicinity to the western U.S., compared to the Atlantic Ocean, AMO

was excluded from the analyses. Similar to the first task, this task also hypothesized that the
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salient features of the association between the western U.S. SWE and the climate signals were

better explained in their frequency components.

The third task extended the scope of the study by focusing on evaluating the trend and
shift patterns of temperature, precipitation, and PET across northern India during the monsoon
season. The change patterns were compared against the various phases of ENSO to weigh their
influence on the Indian climate extremes. The spatiotemporal relationships among the variables,
i.e., temperature, precipitation, and PET, were investigated as well across the last century.
Moreover, this task also intended to determine the apportionment entropy, i.e., distribution of
trends over the years or the months of a season, to provide greater insights into the trend

quantification process.

In the final task, observed and modeled (Coupled Model Intercomparison Project Phase 5
— referred to as CMIPS in the following sections) temperature and precipitation trends, for the
Colorado River Basin, were compared under the influence of change (abrupt shift) points and
several autocorrelation types (known as persistence in the hydrology literature) to determine the
models’ ability in mapping the observed behavior. Such analyses may estimate the inherent bias
in the modeled datasets, and the obtained results may be helpful in adjusting the models,
especially when used for predicting future scenarios. Choice of the appropriate model, among a
large pool of available models for a particular region, can also be beneficial for regional water
management. The formulations of each of the tasks were based on the following set of questions,

which were supported by their respective research basis.

Task 1: Multi-scale spatiotemporal change analysis and short term projection of the conterminous

U.S. streamflow in response to large scale climate variability.
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Research Questions:

e What are the spatiotemporal trend and shift patterns of the conterminous U.S. streamflow
in association with large-scale oceanic-atmospheric climate signals across multiple
frequency bands?

e How effective are data-driven models, e.g., ANN, SVM, and GPR, when coupled with
data pre-processing techniques, e.g., PCA and WT, in predicting short-term streamflow

behavior?

Research Basis: Detection of trends and shifts across multiple frequency bands may provide a
better understanding of the nature of the change patterns, especially when such changes have
been found to be associated with the oscillatory behavior of large-scale oceanic-atmospheric
climate signals such ENSO, PDO, and AMO. Since these signals contain multiple frequency
components and alternating phases when changing over a long time, associating the streamflow
change patterns with these signals across various frequency bands can be of significant
importance. The detected intra-variation and inter-covariation between streamflow and the
climate signals across multiple frequency bands may have the potential to improve the predictive
ability of the data-driven models, e.g., ANN, SVM, and GPR, when coupled with pre-processing

techniques and designed/optimized properly.

Major Contributions:

e Detection of trends and shifts of the conterminous U.S. streamflow in the original as well
as decomposed time series of the water year and seasonal data using non-parametric

statistical tests.

10
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e Determination of spatiotemporal association between the regional streamflow and large-
scale oceanic-atmospheric climate signals originating from both the Pacific and Atlantic
Oceans.

e Testing of data-driven models coupled with data pre-processing techniques to predict
short-term streamflow behavior.

e Evaluation of relative phase relationships (lag-response behavior) between the climate

signals and the regional streamflow across multiple time scales along the study period.

Task 2: Multi-scale correlation between the western U.S. snow water equivalent and large-scale

climate variability of the Pacific Ocean.

Research Questions:

e How do the large-scale oceanic-atmospheric climate signals originating from the Pacific
Ocean affect the western U.S. SWE across multiple frequency bands?

e  Which regions of the western U.S. have maintained a consistent phase relationship, in
terms of SWE, with the large-scale climate signals originating from the Pacific Ocean;

and how does the lag-response behavior change across multiple frequency bands?

Research Basis: Association between regional western U.S. SWE and the large-scale oceanic-
atmospheric climate signals originating from the Pacific Ocean, e.g., ENSO and PDO, can be
better explained in their frequency components since these signals contain multiple frequency
components. Such signals also alternate between phases when changing over a long time. The
detected correlation between SWE and the climate signals across multiple frequency bands may
provide a better insight into their spatiotemporal relationships and may explain their phase

relationships with greater detail.
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Major Contributions:

e Multi-scale correlational analysis of the western U.S. SWE, both state-wise and
hydrologic region-wise, in response to Pacific Ocean climate signals.

e Evaluation of relative phase relationships (lag-response behavior) between the climate
signals and the regional western U.S. SWE across multiple time scales along the study

period.

Task 3: Spatiotemporal trend, shift, and entropy analyses of temperature, precipitation, and

potential evapotranspiration of north Indian monsoon during the ENSO phases.

Research Questions:

e What are the spatiotemporal trends and shift patterns of temperature, precipitation, and
potential evapotranspiration in the north Indian monsoon (and its comprising months)
across the last century during the phases of ENSO?

e What is the rate of change (slope) of the trends and how are the trends distributed

(apportioned) along the years and through the months of monsoon?

Research Basis: Large-scale oceanic-atmospheric climate signals, such as ENSO and their
phases have been found to influence global hydro-climatological patterns in various ways based
on the geography and the seasonal variation of a region. Among the different regions of India,
the northern part of the country has been observed to experience many different climate
extremes, e.g., storms, droughts, and floods, over the years. Since monsoon is the single most
important season for the region, evaluation of the temperature, precipitation, and PET patterns

(both trends and shifts) across the last century, especially during the various phases of ENSO,

12
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can be of great value to regional water management. A proper quantification, e.g., the rate of
change and apportionment, of the trends can also be helpful in evaluating temporal variation
across the years and through the months of monsoon, which lasts from June to September.
Moreover, as the literature suggests, the multi-variable analyses approach to be adopted in the
study may help investigators to understand the response of regional hydrology to large-scale

climate signals such as ENSO.

Major Contributions:

e Evaluation of the long-term trend and abrupt shift patterns of temperature, precipitation,
and PET across north India at the various ENSO phases using non-parametric statistical
tests.

e Determination of the spatiotemporal relationships between the selected variables during
monsoon and at each of the monsoonal months over a century-wide period.

e Comparison between the major shift points during monsoon and the phases of ENSO,
which might have resulted in extreme events, e.g., flood or drought, throughout the study
period.

e Analyses of entropy (apportionment entropy) to quantify how the detected variations
were distributed temporally over the years (annually) and during the months (seasonally)

of monsoon along the study area.

Task 4: Comparison of trends and shifts in the observed and modeled temperature and

precipitation patterns of the Colorado River Basin under shifts and persistence.

13
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Research Questions:

e What are the direction and magnitude of temperature and precipitation trends in the
Colorado River Basin along the last century in the observed and modeled (CMIP5)
gridded datasets?

e How do the shifts alter the direction and magnitude of the trends and what are the
influences of various types of persistence, e.g., short and long-term autocorrelation, on

the observed and modeled trends?

Research Basis: Comparison between observed and modeled datasets provides a set of
qualitative and quantitative metrics to evaluate the accuracy of the modeled datasets, especially
when such modeled datasets are heavily used for hydro-climatological prediction, such as the
CMIPS. Assessment of trends (both in direction and magnitude) in the observed and modeled
datasets can be helpful in correcting the bias (if any) in the modeled datasets. Moreover, such
trends can highly be influenced by the presence of shifts, which can alter or moderate an existing
trend. An undetected shift may result in poor estimation of a trend. Besides, the presence of
persistence, i.e., autocorrelation in data, can overestimate a trend unless it is removed before the

application of trend detection tests.

Major Contributions:

e Adoption of a shift-trend approach where the direction and magnitude of the trends are
evaluated independently before and after significant shift points for both the modeled and
observed datasets.

e A thorough examination of the effect of persistence not only for the trend tests but also

for the detection of shift points.
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e Determination of the inconsistencies detected between the CMIP5 and observed datasets

—under the influence of shift points and persistence.

1.4. Research Tasks

The tasks conducted are presented in manuscript formats. The current chapter contains
the introduction and formulates the research questions for the study. Chapter 2 is a manuscript
titled “Multi-scale spatiotemporal change analysis and short term projection of the conterminous
U.S. streamflow in response to large scale climate variability”, which addresses the first set of
research questions based on the underlying basis discussed earlier. This task investigated the
significant spatiotemporal variations in the continental U.S. streamflow patterns as a response to
large-scale climate signals across multiple spectral bands. Chapter 3 is a manuscript titled
“Multi-scale correlation between the western U.S. snow water equivalent and large-scale climate
variability of the Pacific Ocean”, which addresses the second set of the research questions based
on the associated research basis. This task determined the correlations between the western U.S.
SWE and the two major oceanic-atmospheric indices originating from the Pacific Ocean,
namely, ENSO and PDO, were evaluated using continuous wavelet transform and its derivatives.
Chapter 4 is another manuscript titled “Spatiotemporal trend, shift, and entropy analyses of
temperature, precipitation, and potential evapotranspiration of north Indian monsoon during the
ENSO phases”, which addresses the third set of research questions based on their underlying
basis. This task determined the influence of ENSO on the north Indian temperature, precipitation,
and PET change patterns were evaluated during the monsoon season across the last century.
Chapter 5 is the last manuscript titled “Comparison of trends and shifts in the observed and
modeled temperature and precipitation patterns of the Colorado River Basin under shifts and

persistence”, which address the last set of research questions based on their research basis
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discussed in the previous section. This task evaluated CMIP5 simulation models’ ability to
capture the observed trends under the influence of shifts and persistence in their data
distributions. Each of the chapters associated with the manuscripts also has its own introduction,
study area and data, methodology, results, discussion, and conclusions sections. Chapter 6
summarizes all the tasks along with their major contributions and limitations. It also contains

recommendations for future work.
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CHAPTER 2: MULTI-SCALE SPATIOTEMPORAL CHANGE ANALYSIS AND
SHORT-TERM PREDICTION OF THE CONTERMINOUS U.S. STREAMFLOW IN

RESPONSE TO LARGE SCALE CLIMATE VARIABILITY

2.1. Introduction

Climate warming has affected hydrologic processes in various ways — one of the most
prominent involves changes in the behavior and intensification of the hydrologic cycle (Durdu,
2010). The adverse consequences of these changes have increased under the changing climate, as
the rapid increase in population stresses limited water resources (Wu et al., 2013). A detailed
description of such adversities can be found in the assessment reports (ARS and AR6) of the
Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2014 and 2019). Water managers
have expressed concerns regarding the aftermath associated with access to fresh water as a
response to the change in climate (Dawadi and Ahmad, 2013; Thakali et al., 2016 and 2018). In a
study of global and continental flow behaviors in relation to temperature increase by Labat et al.
(2004), climate change was found to have a severe impact on North American streams. Studies
indicate a considerable change in the intensity of flow behavior across the United States (U.S.),
especially in the last century (U.S. EPA, 2012). As a consequence of the increasing temperature,
flow regimes of the northern rivers in the U.S. have experienced major changes (Boyer et al.,
2010). Hence, evaluating the change in flow behavior, along with other hydrologic variables, has
become crucial to determining the effects of climate variability and change on water resources
(Birsan et al., 2005). Changes in the intensity and frequency of flow events can potentially
endanger critical infrastructures and the natural environment (Burn et al., 2010; Tamaddun et al.,
2015). Besides restricting access to potable water for future generations, with the escalating

growth in the energy sector, the challenge becomes even more critical for water managers
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(Melesse et al., 2011). In previous studies (Tamaddun et al., 2016a and 2016b), the changes in
flow were divided into two broad categories, namely, the long-term trend, a gradual and
monotonic change that was observed in the past, and the abrupt shift, a sharp change in the flow
regime. Inattention to such changes may result in poor decision making in water resources
management (Mirchi et al., 2012). As a result, besides emphasizing the knowledge of the
regional trends and shifts as a response to large-scale climate variabilities (Clark et al., 2000),
studies have suggested modifications of regional public policies to cater to these changes (Nalley

etal., 2012).

Studies show that changes in streamflow in the U.S. have experienced significant
variations depending on the type of flow measurement, e.g., low flow, moderate flow, and peak
flow (McCabe and Wolock, 2002; Jobe et al., 2018). The variations were also found to be
significant across different regions (Groisman et al., 2001) and at different temporal scales, e.g.,
annual and seasonal flows (Small et al., 2006). Studies also suggest that many of the traditional
trend detection tests may not be resilient against nonlinearity (McBean and Motiee, 2006).
Hence, those tests are often coupled with other analytical tools that are capable of dealing with
nonlinear trends (Nalley et al., 2012), since such trends are relatively frequent in hydro-
climatological data. Over the past few decades, wavelet transforms (WTs), which can be either
discrete or continuous in nature, have been used as an analytical tool in several studies that
involved feature detection in frequency components (Partal and Kiigiik, 2006). Discrete wavelet
transform (DWT), more precisely multi-resolution analysis (MRA), a derivation from DWT, has
been used for spectral analysis in signal processing with the ability to decompose a signal into a
set of high- to low-frequency components, referred to as spectral bands (SBs) in the following

sections, which can assist in the analyses to detect the underlying features. A classification of
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streamflow into distinct hydro-climatic categories was provided by Smith et al. (1998) using
DWT. Coulibaly and Burn (2004) explored the dynamic link between different climate signals
and streamflow in the Northern Hemisphere by using continuous wavelet transform (CWT). The
new WT analyses methods used in the field of hydrology have been reviewed and explained by
Labat (2005). Pagano and Garen (2004) studied the western U.S. streamflow and suggested the
use of WT for time-series analysis across multiple SBs for a better understanding of the less
frequent events. Kiigiik and Agiralioglu (2006) suggested the use of WT as a better feature
detection technique compared to classical methods, e.g., Fourier transform (FT). Bayazit and
Aksoy (2001), Drago and Boxall (2002), and Gaucherel (2002) also explored the use of WTs
(both CWT and DWT) on nonstationary hydro-meteorological data at multiple temporal scales
and recommended the WT approach over the traditional FT or derivatives of FT. Based on the
documented literature, it was found that WT serves as a robust analytical tool in evaluating the

change in hydro-climatological data.

The primary objective of the current study was to evaluate the effects of SBs on the
spatiotemporal trends and shifts of the continental U.S. streamflow across hydrologic regions and
to determine their association with large-scale climate signals. Hence, streamflow data from 237
unimpaired stations were obtained and decomposed into multiple low-resolution subseries using
DWT. The original time series along with their decompositions were then analyzed using non-
parametric tests that are not limited to any particular probability distributions. Trends and shifts
were detected using the Mann-Kendall (MK) (Mann, 1945; Kendall, 1975) test and the Pettitt's
test (Pettitt, 1979), respectively. Later, wavelet coherence (WTC) analysis, derived from CWT,
was used to determine the spatiotemporal association between regional streamflow and three

large-scale climate signals, i.e., E1 Nifio Southern Oscillation (ENSO) and Pacific Decadal
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Oscillation (PDO), representing the sea-surface temperature (SST) fluctuations originating from
the Pacific Ocean; and Atlantic Multi-decadal Oscillation (AMO), representing the SST
fluctuation originating from the Atlantic Ocean. The analyses were conducted over a study
period of 62 years, i.e., from 1951 to 2012. Emphasis on applying multiple statistical methods
found in the literature (Ahn and Palmer, 2015), while analyzing hydro-climatological data,
motivated the current study to adopt such an extensive analyses approach to provide an in-depth

analysis on a continental scale, which is novel to the current study.

In a previous effort, Sagarika et al. (2014) assessed the trends and shifts of the U.S.
streamflow accounting for autocorrelation (known as persistence in the hydrology literature) in
data. The current study extended the depth of analyses by incorporating the effects of spectral
frequencies in determining the streamflow variability. Besides the water year, this study also
determined the seasonal trends and shifts, since the seasons play a significant role in the demand
sector, especially in arid regions. Pathak et al. (2016) used trend analysis, coupled with DWT, to
evaluate the hydrologic changes in the mid-western United States. In addition to applying DWT
on a continental scale, the current study broadened the scope further by applying WTC in order
to evaluate the association between regional streamflow patterns and large-scale climate signals.
As many of the climate signals exhibit oscillatory behavior, application of WTs in understanding
the effects of their frequency components in association with the U.S. streamflow was
considered pivotal to the study. Even though removal of persistence before analyzing trends in
data is found in the literature and is considered to be important (Serinaldi and Kilsby, 2016),
studies suggest that the performance of the commonly used methods may not be satisfactory
enough, and therefore, can produce biased results (Khaliq et al., 2009). Moreover, the MRA

approach utilized in this study involves the application of high and low pass filters; hence, the
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removal of persistence from the decomposed components was considered to be redundant. The
data used in the study were obtained from unimpaired streamflow stations only; such stations can
better represent the effects of climate variability since they are free from anthropogenic
interference, meaning the flow paths of the selected streams on which the stations were located
had not been modified by human activity. As decomposed time series are of lesser complexity
than the originals, the salient features of the location of data variability, e.g., more frequent
events or more uncommon extremes, are better represented in the decomposed series (Restrepo
et al., 2014; Bhandari et al., 2018; Tamaddun et al., 2019a). As a result, the current study
hypothesized that the spectral components can better explain the relationship between the local
variations and large-scale climate variability. This is the first study in the documented literature
that couples trend and shift detection tests with spectral component (frequency) analyses on a
continental scale, and analyzes the change patterns in association with multiple large-scale
climate signals. Such robust analyses may help explain the physical mechanisms of the oceanic-
atmospheric systems that affect the U.S. streamflow. A more recent approach focuses on the
integration of multiple non-parametric methods to render better results, not only in terms of
detection of change patterns but also to predict their behavior using data-driven models (Ahn and
Palmer, 2015; Belayneh et al., 2016; Tiwari and Adamowski, 2017). Studies suggest that
application of state-of-the-art machine learning techniques (intelligent models) can significantly
increase the accuracy of hydro-climatological models’ prediction (Tiwari and Adamowski, 2017,
Ateeq-ur-Rauf et al., 2018; Bhandari et al., 2019). Coupling of pre-processing techniques, e.g.,
principal component analysis (PCA) and WT, with intelligent models have also been found to
increase the accuracy of time-series forecasting (Belayneh et al., 2016). Hence, this study also

tested the efficacy of multiple data-driven models preceded by PCA and DWT. Besides
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quantifying trends and shifts in association with large-scale climate signals, the results of this
study may also be useful in improving forecasting models based on the detected multi-resolution

associations, which may lead to making better water management decisions.

2.2. Study Area and Data

Out of the 704 unimpaired streamflow stations across the 18 hydrologic regions of the
continental U.S. listed in the Hydro-Climatic Data Network (HCDN)-2009 (Lins, 2012)
published by the United States Geological Survey (USGS) (http://water.usgs.gov/GIS), 237
stations were selected, each having 62 years of continuous monthly mean data from 1951 to
2012. To avoid spatial bias, in cases of streams with multiple stations, the stations at upstream
locations were selected. Figure 2.1 (left) shows the locations of the stations across the hydrologic
regions. The water-year mean, ranging from the previous year’s October to the current year’s
September, and the seasonal means, i.e., fall (Oct-Dec), winter (Jan-Mar), spring (Apr-Jun), and
summer (Jul- Sept), were used for the analyses. Figure 2.1 (inset table in the middle) shows the
number of stations in each region along with the abbreviations used in the text to refer to the

regions.

The monthly ENSO and AMO indices were obtained from the National Oceanic and
Atmospheric Administration’s (NOAA) (https://www.esrl.noaa.gov/) online database. The
monthly PDO indices were obtained from the Joint Institute for the Study of the Atmosphere and
Ocean’s (JISAO) (http://www.jisao.washington.edu/) database. JISAO is a research collaboration

between the University of Washington and NOAA.
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2.3. Methods

Trend and shift detection tests were applied on the original as well as on the decomposed
time-series. Characteristics of the test methods, such as the ability to analyze skewed (non-
normal) distributions, resistance to outliers, and sensitivity to non-stationarity in hydro-climatic
data (Lins and Slack, 1999), dictated the choice of these two test methods (On6z and Bayazit,
2003; Villarini et al., 2009). DWT, with MRA being used as the design method, was applied to
obtain the time series at discrete scales (DSs). WTC, preceded by CWT, was used to determine
the spatiotemporal association between the regional streamflow and the climate signals across
continuous scales (CSs). In the following sections, brief descriptions of the MK and Pettitt’s
tests, followed by discussions of DWT, MRA, CWT, and WTC have been provided based on the
previous literature. Please refer to the original sources for the fundamental theories and

mathematics behind each test.
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2.3.1. Trend and shift tests

The MK trend test (Mann, 1945; Kendall, 1975) is based on the null hypothesis that there
is no trend in the time series. The test determines the direction of the trend, which can either be
an increase (positive), decrease (negative), or absence of a trend, from the sign of a signum
function. The Pettitt's test (Pettitt, 1979) detects the shift in a time series by testing the anomaly
between the mean of two independent samples from the same time series. The direction of the
shift, which can be either positive, negative, or an absence of a shift, is determined from the
maximum and minimum probability estimates based on the significance level used. More details
about and applications for these two tests can be found in the work of Villarini et al. (2009). The
Walker’s test (Wilks, 2006) was used to estimate the field significance of the individual regions
depending on the number of significant stations within the region. This test uses the binomial
distribution to determine if the number of significant trends observed could have happened by
chance. A detailed discussion on regional trends can be found in the work of Helsel and Frans
(2006). The MK test, the Pettitt’s test, and the field significance test were analyzed at a minimum

of 10% significance level (p < 0.10).

2.3.2. Wavelet transforms

The original streamflow time-series were decomposed using the wavelet toolbox found in
the software package of MATLAB. For DWT, Coiflet was used as the mother wavelet function,
which is symmetric in nature and is desirable for a linear response of the filter, which relates to
the stability of the filter and helps in analyzing the trend in a robust way. For more details on
choosing a wavelet function, readers may refer to Torrence and Compo (1998). MRA, which is a

one-dimensional wavelet decomposition technique, was used as the design method of DWT.
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MRA uses a sub-band coding technique for multiple wave reconstruction. Dilates and translates
are generated by using the mother wavelet function to decompose the time domain into lower to
higher spectral frequency bands (Karthikeyan and Nagesh Kumar, 2013), which are useful in
representing the multiple resolutions of the time-frequency domain (Tan et al., 2011). More

details on the wavelet transform used in this study can be found in Appendix 2.A.

The CWT approach, followed by the WTC analyses adopted in the study, was based on
the works of Jevrejeva et al. (2003) and Grinsted et al. (2004). Morlet was used as the wavelet
function for CWT. CWT determines the variance in a time series across the SBs, while WTC
quantifies the correlation between two time series across the SBs. Readers may also refer to
Tamaddun et al. (2017a and 2017b) for further explanation of each of the steps adopted in the
study. CSs ranging from two to 16 years were considered in the analyses since the amount of
uncertainty increased as the resolution decreased beyond the SBs of 16 years. DSs at two, four,
and eight years were also chosen for the same reason, as can be seen in Figure 2.1 (right) — after
three decompositions, little resolution remained in the time series. The following sections use the
terms DS and CS to refer to the time series at different SBs associated with the discrete and
continuous scales, respectively. For example, CS8 to CS16 refers to the time series associated
with the continuous SBs ranging from eight to16 years, while DS4 refers to the four-year discrete
SB. The CWT and WTC were analyzed with a minimum of 5% significance level against red
noise. The non-stationary behavior of hydro-climatic variables in time-series analysis and the use
of wavelets to address such behavior have been discussed in the works of Karthikeyan and
Nagesh Kumar (2013) — this work also suggests the type of significance tests to be used in a

hydro-climatic time-series analysis.
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2.3.3. Wavelet artificial neural network (WANN) modeling

The final step of the study was to incorporate all the findings from the previous steps and
combine them in artificial neural network (ANN) models to be used for short-term prediction. In
this step, the discretized subseries (the first three details, i.e., DS2, DS4, and DS8 and the third
approximation, i.e., AC3, as shown in Figure 2.1) of the regional streamflow patterns as well as
of the three climate signals were fed into a set of ANN learning algorithms. PCA was conducted
to determine the inputs that are statistically independent of each other. Moreover, the most
efficient (or optimal) number of hidden neurons for each of the region was determined based on
the guidelines provided by Belayneh et al. (2016). The data sets were divided into two
independent segments before training the models. The first segment consisted of 50 years of data
ranging from 1951 to 2000, which were used for training and validation. The second segment
consisted of the remaining 12 years of data, i.e., 2001 to 2012, which were used for testing (with
unseen data). Besides validation with 20% random sampling, K-fold cross-validation technique
was adopted to train and validate the models, where at each fold, 20% of the data were left out
for validation, while the remaining 80% of the data were used for training (resulted in a total of 5
folds). The training and validation of the models are discussed in the results section. Three
groups of algorithms were tested in this study: (i) backpropagation training function with
Jacobian derivative, (ii) backpropagation training function with gradient derivative, and (iii)
supervised weight/bias training functions. A total of 17 learning algorithms were tested from
these three groups. More details on ANN models coupled with wavelets (WANN) can be found
in Belayneh et al. (2016), Tiwari and Adamowski (2017), and Worland et al. (2018). Similar

training, validation (K-fold cross-validation), and testing were conducted using support vector
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machines (SVMs) and Gaussian process regression (GPR) models to compare them against the

WANN models. The final results have been reported in the results section.

2.4. Results

The study analyzed the continental U.S. streamflow trends and shifts (in the original time
series and in their DSs), as well as quantified the spatiotemporal association between the regions
experiencing significant shifts and three large-scale climate signals across the CSs. Figure 2.2
illustrates the location of the stations with significant trends and shifts in water year and their
DSs. Figures 2.3 and 2.4 show the WTC results that quantified the correlation (wavelet squared
coherency, Ry%) between the regional streamflow and the climate signals. Additional tables
(Tables A2.B1 and A2.B2) are provided in Appendix 2.B, while both Appendices A2.C and
A2.D contain additional figures and their descriptions. Results of the short-term (one step ahead)
prediction with SVM, GPR, and WANN for the regions MA, MO, PN are provided in Figures
2.5 to 2.7. Additional figures (Figures A2.E1 to A2.E21) and tables (Tables A2.E1 to A2.E6),
containing the results of PCA, effect of hidden neurons on model performance, selected WANN
model architecture, validation with random sampling, K-fold cross-validation, and comparison

among several models and learning algorithms are provided in Appendix A2.E.

2.4.1. Trends and shifts in water years and seasons

In a water year and its DSs, positive trends were observed in the northeastern and north-
central regions, while negative trends were located in the northwestern region (Figure 2.2). NE,
MA, GL, OH, UMS, SRR, MO, AWR, TXG, and RG showed a significant number of stations

with positive trends, while negative trends were observed in PN and CA. The number of stations
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with significant trends and regions with field significance increased as the decomposition level

increased (DSs increased) (Table A2.B1).

Stations with positive shifts, in water years and their DSs, followed similar spatial
patterns to the ones with positive trends. However, stations with negative shifts were found to be
more spatially dispersed (Figure 2.2). A steady increase in the number of stations with significant
shifts, with an increase in DSs, was noticeable (Table A2.B2), which was not so evident for the
stations with trends. Among the regions, NE, MA, SAG, GL, OH, UMS, MO, AWR, and TXG
showed positive shifts, while negative shifts were observed in SAG, PN, and CA. In the higher

DSs, all regions showed field significance.

Trends and shifts at each of the seasons, along with their DSs, were also evaluated
(Appendix 2.C). The results showed a unique spatial pattern of stations with significant trends
and shifts during each season. Fall (winter) showed similarity with summer (spring) in terms of
the spatial pattern of significant stations. The increase in the number of significant stations with

the increase in DSs was also noticeable in each of the seasons.
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Figure 2. 3: Wavelet coherence spectra between regional streamflow of (1% row) New England, (2" row) Mid-
Atlantic, (379 row) Great Lakes, and (4" row) Ohio and the climate signals of (1% column) ENSO, (2" column)
PDO, and (3" column) AMO. Red (blue) represents a stronger (weaker) correlation (wavelet squared coherency,
R.2). 5% significance zones against the red noise are delineated by the thick black contour lines. Arrows show the
relative angular phase relationships between regional streamflow and the climate signals. Right (left) pointing
arrows depict in-phase (anti-phase) relationship. Vertically upward (downward) arrows depict a lead of 90° or one-

quarter (270° or three-quarter) between the climate signal and regional streamflow.
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2.4.2. Concurrence of Shifts and the Climate Signals

Further analyses revealed that the number of stations with significant shifts over the study
period experienced oscillating patterns — a series of positive shifts followed by a series of
negative shifts, especially in the higher DSs (Appendix 2.D). This finding led the researchers to
hypothesize that shifts can be explained better in their DSs, and such periodic behavior of shifts
might be associated with large-scale climate signals since such signals also show periodic
behavior with multiple frequency components. Hence, the study identified the regions that
showed significant shifts during the coupled phases of the climate signals (Appendix 2.D). The
regions of NE, MA, GL, OH, UMS, SRR, MO, and PN (shown as hatched regions in Figure 2.1)
were found to experience significant shifts either at one or multiple coupled phases of the climate
signals. To determine the variance of streamflow in each of these regions across multiple CSs,
CWT was applied to the individual regional time series. CWT was also applied to each of the
climate signals to determine their variance across the CSs (Appendix 2.D). Then using WTC,
which is a complex conjugation of two individual CWTs, the correlation between the regional
streamflow and the climate signals were quantified across the CSs (Figures 2.3 and 2.4) — where
the higher power (wavelet squared coherency, Ry?) in the WTC spectrum represented a higher
correlation between the two time series. The relative phase relationships, which represent the
lag-response behavior between regional streamflow and climate signals, across the CSs, were

also plotted using arrows in the figures.

2.4.3. Correlation between regional streamflow and climate signals

The WTC analyses between regional streamflow and the climate signals revealed that

each of the regions experienced a significantly different association with the climate signals. The
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differences observed were found to be high even among adjacent regions. Correlation or the
wavelet squared coherency (0 < Ry* < 1.0) was calculated based on Torrence and Webster
(1999). All regions showed a high correlation (0.7 to ~ 1.0) with ENSO in CS8 to CS16.
Regions, such as NE, SRR, MO, and PN showed a higher correlation (0.8 to ~1.0) with ENSO
across the entire study period in the higher CSs. The correlations were found to strengthen after
the 1990s for all the regions, as zones with higher correlations also started to show up in the
lower CSs, e.g., below CS4 and between CS4 and CS8 (Figures 2.3 and 2.4). PDO showed a
relatively higher correlation (0.8 to ~1.0) with the eastern regions, e.g., NE, MA, GL, and OH,
compared to the central and western regions. MA and OH showed a higher correlation (0.9 to ~
1.0) with PDO beyond CS16 across the entire study period. A higher correlation was also
observed in the lower CSs for some regions; though the zones of significant correlation were
observed to be of longer duration in the higher CSs (Figures 2.3 and 2.4). AMO showed
intermittent zones of higher correlation (0.7 to ~ 1.0) with all of the regions at multiple intervals
during the study period. Most of the significant zones with higher correlation (0.8 to ~ 1.0) were
found between in CS2 and CS4 or between CS4 and CS8. MA, OH, and PN showed higher
correlations (0.9 to ~ 1.0) with AMO across the entire study period beyond CS16 (Figures 2.3

and 2.4).
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Figure 2. 4: Wavelet coherence spectra between regional streamflow of (1% row) Upper Mississippi, (2" row)
Souris-Red-Rainy, (3" row) Missouri, and (4™ row) Pacific Northwest and the climate signals of (1% column)
ENSO, (2" column) PDO, and (3" column) AMO. Red (blue) represents a stronger (weaker) correlation (wavelet
squared coherency, R,?). 5% significance zones against the red noise are delineated by the thick black contour lines.
Arrows show the relative angular phase relationships between regional streamflow and the climate signals. Right
(left) pointing arrows depict in-phase (anti-phase) relationship. Vertically upward (downward) arrows depict a lead

0f 90° or one-quarter (270° or three-quarter) between the climate signal and regional streamflow.
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The relative phase relationships, represented by the arrows in the WTC power spectra,
suggested that the lag-response behavior between regional streamflow patterns and ENSO were
more consistent, compared to the phase relationships between regional streamflow and
PDO/AMO. In cases of ENSO, the majority of the significant zones with higher correlations
either showed an in-phase relationship (arrows pointing right) or a 90° difference (arrows
pointing straight up). A 90° difference meant ENSO led the streamflow variation by a quarter,
which is equivalent to six months to four years, depending on the CS of interest. The angular
phase relationships between regional streamflow and PDO/AMO did not show any noticeable

patterns, as they were found to be in opposing phases even within significant CSs bands.

2.4.4. Short-term prediction using data-driven models

Short-term (one step ahead) prediction using ANN, SVM, and GPR (preceded by WT)
required determination of statistically independent inputs to avoid overfitting and to minimize
autocorrelation. Hence, PCA was conducted for the selected regions. MA, MO, and PN were
selected as the regions to be tested since these regions showed significant association with the
climate signals across multiple SBs as was discussed in the previous section. Moreover, these
three regions also represent the eastern, central, and western regions, respectively, of the
conterminous United States. As shown in Figure 2.1, each time series was decomposed using
DWT to obtain three details (i.e., DS2, DS4, and DS8) and the final approximation (i.e., AC3).
Hence, the regional streamflow patterns were represented by four discretized sub-series.
Similarly, each of the climate signals was also decomposed using DWT and four sub-series from
each of the climate signals were obtained. Therefore, a total of 16 possible inputs (four from the

regional streamflow and four from each of the climate signals) were obtained. Using PCA,
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statistically independent inputs (orthogonally transformed features) were obtained. The results of

PCA for MA, MO, and PN are shown in Figure A2.E1.

Once the optimum number of inputs, which are statistically independent of each other,
was determined for each of the regions, the most efficient number of hidden neurons, which
produced the least error, were selected based on the guidelines provided by Belayneh et al.
(2016). The effect of hidden neurons on the model performances for the regions MA, MO, and
PN are provided in Figure A2.E2. Figure A2.E3 shows the optimized ANN model architecture
for the selected regions. The optimum number of inputs (statistically independent features) for
MA, MO, and PN was found to be 11, 12, and 11, respectively. The most efficient number of
hidden neurons for these three regions were found to be three, seven, and two, respectively. For
MO and PN, seven and two were selected as the most efficient number of hidden neurons instead
of 14 and 17 (which suggested least error) since even with seven and two neurons, the errors
were comparable up to three decimal places with the errors obtained using 14 and 17 neurons as
can be seen from Figures A2.E2b and A2.E2c. The optimum ANN model architecture for each of
the selected regions also showed the optimum delayed response (lag-response relationship) of the

outputs as compared to the inputs.

As mentioned in the methodology section, the input data were divided into two segments.
The first segment contained data from 1951 to 2000 (a total of 50 years). The second segment
contained data from 2001 to 2012. The first segment was used for training and validation (which
involved adjustments of the model parameters) of the models, while the second segment was
used for testing (with unseen data). Two approaches were tested to validate the models: (i) with a
20% random sampling and (ii) with K-fold cross-validation (with 5 folds). Results of training

and validation using a 20% random sampling are provided in Figure A2.E4 for the three selected
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regions. Results of the K-fold cross-validation are provided in Figures A2.E5 to A2.E13.
Validation with both the approaches was found to be quite satisfactory with R? (coefficient of
determination) close to or higher than 0.90 in almost every fold. Similar to ANN, K-fold cross-
validation was also adopted with several SVM and GPR models. The pooled results of K-fold
cross-validation (using 5 folds) are tabulated in Tables A2.E1 to A2.E3. Comparison among the
various SVM models suggested that quadratic SVM produced the best training and validation
performance, while comparison among the various GPR models suggested that Matern 5/2
produced the best training and validation performance. Hence, the quadratic SVM and Matern

5/2 GPR were selected to be evaluated in the testing phase with unseen data as inputs.

Once the training and validation phases were completed, testing with the unseen data was
employed. In this phase, the unseen data (i.e., from 2001 to 2012) were tested with one step
ahead prediction at every simulation (run). The performances of the testing phases are shown in
Figures 2.5 to 2.7. The performances of SVM, GPR, and ANN, preceded by PCA and WT, were
found to highly comparable. In all the cases, the fitted models predicted with significant accuracy

(with R? above 0.90).

To test the accuracy of several learning algorithms available with the ANN models in
MATLAB 2018a, a further comparison was made in the testing phase among 17 learning
algorithms. For both MA and MO, Bayesian regularization backpropagation produced the best
result, while for PN, cyclical order weight/bias training produced the best result. The
performances of all the algorithms are provided in Tables A2.E4 to A2.E6. Three performance
ratings, namely, Nash-Sutcliffe efficiency, percent bias, and RMSE-observations standard
deviation ratio, were determined based on Moriasi et al. (2007). The results indicated ‘good’ to

‘very good’ performance ratings in all the cases.
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2.5. Discussion

The original water year and its DSs (Figure 2.2) showed a tendency of having either the
positive or negative trends within a region, except for a few central regions where both
directional trends were present in close vicinity. The generic patterns of trends and shifts were
found to be consistent with previous studies (Sagarika et al., 2014; Tamaddun et al., 2016). A
strong coherence in the regional flow behavior was observed across the DSs as well. Smith et al.
(1998) indicated that WTs, besides explaining the underlying trends, also provide important
insight into the variability and mechanisms of river systems. The current analyses found an
increase in the number of stations with trends as the DSs went higher. Noting such behavior of
trends may help in understanding the periodic nature of the associated streams. Moreover, the
strengthening of trends in higher DSs validates the need for the analysis approach adopted in this
study. Though a single station on each stream was selected to avoid spatial bias, results suggest
that the directions of trends were usually consistent within a hydrologic region. Assessing
multiple stations on a single stream may provide a better understanding of the accompanying

river system.

Compared to trends, stations with shifts were more spatially dispersed across the regions
(Figure 2.2). Though the locations and directions of shifts were found to be similar to trends in
general, a significant number of stations with shifts were found in the central and southern U.S.,
which was not observed with trends. Similar to trends, the number of stations with shifts also
increased as the DSs went higher. Consistency between the trend and shift spatial patterns was
observed, even though the former occurs over a long period of time, while the latter indicates an
abrupt change. Villarini et al. (2009) determined the direction of trends before and after a shift

and found that shifts can strengthen, weaken, or neutralize an existing trend — this explains why
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trends and shifts may have a similar spatial pattern. Moreover, the number of shift points across
the study period showed an oscillatory alternating pattern in the higher DSs, especially in DS8
(Appendix 2.D) — this behavior was hypothesized to be associated with the climate signals in

their SBs and was later evaluated using WTC analyses.

The seasonal analyses revealed a similarity in the spatial patterns of trends and shifts,
between fall (winter) and summer (spring) (Appendix 2.C) — which indicated a behavioral
change at the end of fall (the beginning of winter) and at the end of spring (the beginning of
summer). Like water year, the number of stations with trends and shifts in each season also
increased as the DSs went higher. Similar to McCabe and Wolock (2015), this study also found
seasonal flows to have strong coherence in terms of trend direction within each region, except for
a few central regions where both directional trends and shifts were found in the same season. The
change in seasonal trends and shifts can be attributed to the variation in temperature,
precipitation, evapotranspiration, and contributions from snow and ice, as suggested by Dettinger
and Diaz (2000) and Hamlet et al. (2005). The observed trends and shifts also became stronger as
the DSs went higher. Such behavior can be the result of variability in lags (lags in response to
large-scale climate variability) that affect seasonal flow behavior (Dettinger and Diaz, 2000).
Regions with both directional trends and shifts require further investigation to understand the

mechanisms of the conveying river(s).

The multi-resolution trend and shift analyses, discussed so far, suggest the following: (a)
more stations of significance as the DSs went higher; (b) concurrence of shift years with the
coupled phases of climate signals; (c) tendency of periodic shifts in the higher DSs (Appendix
2.D). Hence, the study hypothesized that such behavior may be attributed to the association

between streamflow and the climate signals at their frequency components. Previous studies
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exploring large-scale climate signals and their teleconnections, such as the studies by Redmond
and Koch (1991) and Kahya and Dracup (1993), suggested a strong correlation between ENSO
and the streamflow patterns of the northwestern, northeastern, and north-central regions, which
confirm the findings of the current study. McCabe et al. (2007) analyzed the Upper Colorado
River Basin (UCRB) flows and concluded that the UCRB flow behavior is associated with
several oceanic signals — among them, North Atlantic Ocean has the highest influence. Though
the current study did not include any station from the UCRB, a unique association, with
significant variation in correlation, was observed between the river basins (hydrologic regions)
and each of the climate signals. Stewart et al. (2005) concluded that the variance in streamflow in
snowmelt-dominated regions, e.g., western U.S., is highly associated with the phases of PDO.
The current study found that ENSO and AMO influence the western regions, e.g., GB and
especially PN, even more strongly compared to PDO. Analyzing the world’s largest rivers and
documenting reasonable physical mechanisms of the oceanic-atmospheric systems, Labat (2008)
emphasized the need for WT-based analyses, as attempted in the study, to investigate the
teleconnection between climate signals and the hydro-climatological variables. Similar to the
current study, Tootle et al. (2005) also found significant coherence between AMO and the
eastern U.S. streamflow patterns. Hence, the study made an effort to better explain the
associations observed in the previous studies by evaluating coherency in the most significant

SBs.

The results showed that ENSO had a higher correlation, compared to PDO and AMO,
with the selected regions during the study period across the SBs. For a few regions, the
correlations were found to be significantly high (Ra> ~ 1.0) in certain CS bands, even across the

entire study period. This was also observed with the other two climate signals, but with ENSO,
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the presence of such higher correlation was more frequent (Figures 2.3 and 2.4). The results also
indicated that ENSO had a higher correlation with all the regions, irrespective of their
geographic locations in the higher CSs, while AMO had a higher correlation with most of the
regions in the lower CSs. Even though PDO originates from the Pacific Ocean, which is located
on the west of the U.S., it showed a higher correlation with the eastern regions of the United
States. For both PDO and AMO, it is possible that significantly higher correlations were present
beyond CS16, as suggested by a few regions since both of these signals oscillate over a decadal

to a multi-decadal scale.

The spatiotemporal association between regional streamflow patterns and the climate
signals across the CSs, along with their relative phase relationships, may help in understanding
some of the physical relationships that were not completely explained in the previous studies.
The current study found significantly high correlations between regional streamflow patterns and
climate signals in their decomposed time series, which supports the initial hypothesis of the
study that such an association can be better explained in their frequency components. The
variations in the associations between streamflow patterns and climate signals may help explain
some of the unique local phenomena. Regional climate (streamflow) modelers, working on the
concepts of lag/lead time approach as a function of large-scale climate variability, may also find

the results useful.

Comparison among the ANN, SVM, and GPR models, preceded by PCA and WT
suggested comparable results both in the training and validation phase as well as in the testing
with unseen data phase. Among the SVM models, quadratic SVM was found to be producing the
best results in all the cases tested in the study, while Matern 5/2 was found to be the best

performer among the tested GPR models. The ANN models were found to be highly sensitive to
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the number of hidden neurons in the model architecture in terms of the model’s performance.
Bayesian regularization backpropagation learning algorithm, among the other 17 algorithms
tested, was found to be producing consistently good results for all the three cases tested in the
study. The delayed response (lag-response relationship) of the outputs with respect to the inputs
observed in the ANN models were found to be comparable with the lags obtained from the WTC

analyses between the climate signals and regional streamflow patterns.

2.6. Conclusions

The study analyzed water year and seasonal trends and shifts (along with their DSs) in
237 unimpaired streamflow stations across the continental U.S. from 1951 to 2012. The
spatiotemporal association between regional streamflow patterns and three large-scale climate
signals were assessed using WTC. The major findings, some of which confirm the findings of

previous works discussed earlier, and the summary results of the study are listed below:

e Positive (negative) trends and shifts in the water year and its DSs were significant in the
northeastern and north-central (northwestern and southeastern) regions.

e A few central regions showed both directional trends and shifts — which was not common
since most of the regions showed spatial coherency in terms of the trend and shift
direction.

e Seasonal trends and shifts suggested unique spatial patterns in the original time series as
well as in their DSs. Fall and spring showed the highest positive and negative trends and
shifts, respectively, suggesting a behavioral change at the end of these two seasons.

e The number of significant stations with trends and shifts increased as the DSs went

higher, with the maximum in DS8. Shifts showed an oscillating behavior in DS8 — which
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led to the hypothesis that such behavior at higher SBs was correlated to the frequency
components of the climate signals.

e ENSO showed a higher correlation with the regional streamflow in CS8 to CS16, while
both PDO and AMO showed higher correlations in the lower CSs (below CS4) and
beyond CS16.

e The relative phase relationship suggested a uniform lag-response behavior (either in-
phase or a lag of one quarter) between significant regional streamflow patterns and
ENSO. For PDO and AMO, no such consistency was observed.

e Comparison among ANN, SVM, and GPR models, preceded by PCA and WT, produced
comparable results with significant accuracy in short-term prediction of regional

streamflow behavior.

Data availability restricted the current study to analyze with high certainty (or adequate
resolution) beyond DS8 for DWT and beyond CS16 for WTC. Decomposing to higher SBs can
be helpful in associating streamflow variations with climate signals having multidecadal
frequency components. In addition, working with a higher number of stations with longer
records may provide a better explanation of the regional change patterns. Considering these
limitations, the study attempted to provide an in-depth analysis of the continental U.S.
streamflow in response to large-scale climate signals in order to help improve the current
understanding of the oceanic-atmospheric systems and their underlying teleconnections with
regional streamflow patterns. The multi-resolution associations observed in the study may help
improve forecasting models, which may lead to better estimation and regulation of regional

flows.
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CHAPTER 3: MULTI-SCALE CORRELATION BETWEEN THE WESTERN U.S.
SNOW WATER EQUIVALENT AND LARGE-SCALE CLIMATE VARIABILITY OF

THE PACIFIC OCEAN

3.1. Introduction

Snow water equivalent (SWE) is a common measurement of the snowpack. According to
the Natural Resources Conservation Service (NRCS), SWE refers to the amount of water that is
“... contained within the snowpack ...”". SWE can be thought of as the theoretical depth of water
resulting from an instantaneous melting of the entire snowpack. Hence, snowpack in terms of
SWE is considered a vital source of runoff in the water supply system across North America
(Hunter et al., 2006; McCabe and Dettinger, 2002). The relative contributions of snowpack to
water yield are much greater in the mountainous regions of the western United States (U.S.) than
many other regions of the country. In these regions, approximately 50%-70% of the annual
precipitation falls as snow, and is stored during the winter as snowpack (Palmer, 1988; Serreze et
al., 1999); eventually, it affects the runoff of the succeeding seasons. The beginning of April is
the time when snow courses attain maximum SWE. The 1 April SWE is used extensively in the
western U.S. as an estimate to forecast the spring-summer runoff, and ultimately can be used to
predict the annual runoff behavior in the surrounding regions. Understanding the relationships
among the factors influencing SWE could be beneficial to forecasters and water managers

dealing with critical infrastructure management and irrigation practices (Hunter et al., 2006).

Previous studies have examined the relationship between long-term climate variability
and the western U.S. snowpack accumulation using various datasets. Cayan (1996) used snow

course data of 60 years from 11 western U.S. states and observed significant anomalies in SWE
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across spatial and topographical variations in the western U.S. mountainous regions. The study
also found that precipitation had a much higher influence on SWE compared to temperature,
which only influenced low-altitude stations. A study by McCabe and Legates (1995) analyzed
atmospheric circulation and spatiotemporal patterns of snowpack accumulation in the western
U.S. using 700-hectopascal (hPa) height anomalies and 1 April snowpack measurements over a
study period of 40 years. They found a strong negative correlation between the variables studied.
Another study found that 1 April SWE showed more than a 100% coefficient of variance, which
was comparable with variation in seasonal precipitation patterns in some of the western states
(Changnon et al., 1991). The study also suggested that snow course records could be used as a

regional climate indicator of snow accumulation during the spring in the Rocky Mountains.

Besides analyzing the direct influence of climate on the western U.S. snowpack, studies
have examined the role of major climate indices on the hydrology of the western United States
(Kahya and Dracup, 1993; Carrier et al., 2016; Pathak et al., 2018). The El Nifio Southern
Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), both resulting from the Pacific
Ocean, are considered to be two of the major large-scale oceanic-atmospheric climate signals
that affect the western U.S. hydrology (Barnett et al., 1999; Beebee and Manga, 2004; Sagarika
et al., 2015). Shifts in pressure cell locations and changes in their intensities cause trade winds to
get stronger or weaker. This results in changes in the locations and velocities of oceanic currents
— both of these cause upwelling of colder water from the bottom of the ocean, and move warmer
ocean-surface-water in specific directions, for example, east or west near the equator in the case
of ENSO. Hence, sea-surface temperature (SST) fluctuations in multiple locations of the Pacific
Ocean are initiated. The variations in pressure cells, coupled with the SST fluctuations, affect the

direction, movement, and productivity of the storm tracks by affecting rates of oceanic
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evaporation and atmospheric moisture content. ENSO, a natural cycle observed in the eastern
Pacific Ocean with a periodicity of two to seven years, alternates between two distinct phases, El
Nifio (positive or warm phase) and La Nifia (negative or cold phase) (Redmond and Koch, 1991).
PDO, which occurs on a timescale of 25 to 50 years, originates from the North Pacific Ocean,
has a larger zone of influence compared to ENSO (Trenberth and Fasullo, 2007). Similar to
ENSO, PDO also varies between warm and cold phases. Studies observing climate indices have
also emphasized the teleconnection between the oceanic climate systems and the global
hydrologic processes (Coscarelli et al., 2013; Sagarika et al., 2016). SST fluctuation alters the
availability of moisture from the oceanic surface currents and eventually affects the formation of
storm systems. Hence, SST fluctuations have the potential to influence hydro-climatological

variables such as precipitation, snowpack, streamflow, runoff, and soil moisture.

Time series associated with hydro-climatological variables are complex in nature, as they
are nonlinear and usually do not follow a normal probability distribution (Jevrejeva et al., 2003).
Several studies have focused on understanding the change patterns and frequencies
(periodicities) of such time series (Cheo, 2016; Tamaddun et al., 2016). Among the various
methods for analyzing non-normal distributions having complex periodicities, wavelet
transforms (WTs) have been suggested as useful tools to extract information from a complex
time series (Lau and Weng, 1995). WTs determine the most significant frequencies influencing a
time series while simultaneously preserving the time dimension (Percival and Walden, 2000).
The history, classification, and theory of WTs can be found in the works of David and

Rajasekaran (2009) and Torrence and Compo (1998).

Considering the advantages of using WT (Yiou et al., 2000), in order to observe

variability in data, this study adopted the concept of continuous wavelet transform (CWT), a
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method used for feature extraction (Foufoula-Georgiou and Kumar, 1995). To understand how
two time series are correlated, concepts of cross wavelet transform (XWT) and wavelet
coherency (WTC) were adopted. Details regarding XWT and WTC can be found in Tang et al.
(2014) and Torrence and Webster (1999). Previous studies examining the relationship of ENSO
and PDO to the western U.S. precipitation mostly have focused on winter precipitation in
particular rather than on snowpack. Since water from snowpack is the most significant water
resource for many western U.S. river systems, SWE is selected as the primary focus of this
study. Data were utilized from 323 Snow Telemetry (SNOTEL) sites (stations) of the western
U.S. for a study period of 56 years covering 1961 to 2016. This record length is a major
extension in terms of the number of stations and the length of data analyzed, compared to
previous studies using similar datasets. CWT was used to observe the variability in data, and
XWT and WTC were used to illustrate and quantify, respectively, the high common power
(association) between the representative time series of the variables. Such an approach has not
been used previously with SWE data. This study also compared the association of ENSO/PDO
across the western U.S. hydrologic regions, which broadened the scope of the study since the

results can be beneficial to regional water managers as well.

3.2. Study Area and Data

The SNOTEL online database of NRCS (http://www.wcc.nrcs.usda.gov/snow/) contains
1 April SWE data for the western United States. The website combines the SNOTEL data,
obtained from telemetry systems, and snow course data, obtained from manual snow
measurements. NRCS uses several meteor burst communications technology (existing from
about 50 to 75 miles above the earth), e.g., radio wave communications, cellular model, satellite,

and line of sight, to collect and disseminate data, which are recorded every 15 minutes. Data
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were obtained from 323 western U.S. SNOTEL stations from 1961 to 2016, a total of 56 years.
Figure 3.1 (bottom left) shows the SNOTEL stations in each state of the western United States.
Figure 3.1 (right) shows the stations in each of the six hydrologic regions representing the
western United States; these regions are delineated by United States Geological Survey (USGS)

in their hydrologic unit map (http://water.usgs.gov/GIS/regions.html).
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Figure 3. 1: (Bottom left) Map showing states of the western U.S. and the 323 SNOTEL stations selected for this
study. (Right) Map showing the spatial distribution of 258 SNOTEL stations across the hydrologic regions

representing the western United States.
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The selected regions were Pacific Northwest (PN), California (CA), Great Basin (GB),
Lower Colorado (LC), Upper Colorado (UC), and Rio Grande (RG). Out of the 323 stations

chosen for the study, 258 stations were found to be in these six hydrologic regions (Table 3.1).

ENSO (NINO 3.4) and PDO indices were obtained for the same historical period as
SWE. ENSO was represented by the December-January-February (DJF) mean. Two different
PDO indices were considered for the analyses. PDOI1 represented the DJF mean; while PDO2
represented the October to March (Oct-Mar) mean. ENSO and PDO data were accessed through
the online databases of the U.S. National Oceanic and Atmospheric Administration (NOAA) and
the Joint Institute for the Study of the Atmosphere and Ocean (JISAO), respectively. Positive and
negative indices refer to the warm and cold phases, respectively, for both ENSO and PDO. The
analyses were conducted with a monthly lead-time approach, e.g., the DJF (Oct-Mar) means of
ENSO/PDOL1 (PDO2) of 2015-2016 were used against the 1 April SWE of 2016, which resulted

in pre-lagged time series.

Table 3. 1: The number of SNOTEL sites in each hydrologic region along with the average elevation (in ft.) of the
sites, the standard deviation of the elevation (in ft.) in a particular region, and the percentage of variance explained

by the first principal component (PC1) for that region. The values are rounded to the nearest whole number.

Hvdrologic Region Number of Average Std. Dev. Of % SWE Variance
y g g SNOTEL Sites Elevation (ft.) Elevation (ft.) Explained by the PC1

Pacific Northwest (PN) 144 6204 1324 65%
California (CA) 5 6641 1200 79%

Lower Colorado (LC) 6 8261 1032 78%

Great Basin (GB) 46 8322 928 64%

Upper Colorado (UC) 49 9324 883 60%

Rio Grande (RG) 8 9749 795 80%

Total 258
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3.3. Methodology

The following sections contain brief descriptions of CWT, XWT, and WTC, based on the
works of Grinsted et al. (2004) and Tang et al. (2014). For further details on the application of
WT in the various fields of hydrology as well as for the mathematical formulations, readers may

refer to Jevrejeva et al. (2003), Torrence and Compo (1998) and Torrence and Webster (1999).

The analyses process adopted in this study are as follows: first, each of the time-series
dataset (in their standardized form) was decomposed using CWT, which showed the variability
in the data, represented by the wavelet power spectrum. Second, XWTs were constructed using
individual CWTs obtained from the first step. The XWTs illustrated the covariance between the
time series involved. Third, significant correlations were determined using WTC, which
quantified the correlation using the Monte Carlo approach. All the analyses were conducted
using the programming platform MATLAB. Each step and the methods used are described in the

following sub-sections.

3.3.1. Observation of Variance in the Data

CWT showed the variability of a time-series dataset at multiple frequency bands across
the time period to understand the periodic nature of the time series (if present) (Foufoula-
Georgiou and Kumar, 1995). Out of the many wavelet functions, the Morlet wavelet function has
been considered to be the most appropriate one for geophysical signal processing (Percival and
Walden, 2000), and therefore was chosen for the current study. The first principal component
(PC1), referred to as ‘SWEI1’ in the following sections — obtained from a principal component
analysis (PCA) using the MATLAB routine — was chosen to represent the variability of data
from the 323 stations. This PC1 explained 52% variability of all the stations. For each hydrologic
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region, a similar approach was adopted where the PC1 of each region represented the variability

of the respective region as shown in Table 3.1.

3.3.2. Detection of Covariance between Time-Series

The formation of an XWT, obtained from a complex conjugation of two CWTs, revealed
the high common power (covariance) and the relative phase relationship of the two time series in
the time-frequency domain (Grinsted et al., 2004). The relative phase angle provided information
regarding the lag-response behavior between the two time series in the time-frequency domain
(Jevrejeva et al., 2003). The statistical significance of covariance between two time series was

determined against a red noise background (Torrence and Compo, 1998).

3.3.3. Quantification of correlation between time-series

Besides showing significant common frequency bands at different time intervals, WTC
quantified the correlation between the two time series. Unlike XWT, WTC was capable of
determining significant coherency at low common power. In this study, the Monte Carlo
approach (Wallace et al., 1993) was adopted to calculate significant wavelet coherence at a
significance level of 5% against the red noise. Details about how to calculate significance levels

against red noise can be found in the works of Torrence and Compo (1998).

3.4. Results

Figure 3.2 contains the individual CWTs that explain the variability in data, using a
wavelet power spectrum and a global wavelet spectrum. Figure 3.3 shows the XWTs and WTCs
between SWEI and ENSO/PDO. Figures 3.4 and 3.5 show the WTCs between the regional SWE

and ENSO and the regional SWE and PDO, respectively, for each of the hydrologic regions. The
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edge effects, shown by the cone of influence (COI) in the XWTs and WTCs, represent the region
of reliability. Since wavelets are not completely localized in time and need to be padded with

zero, the results within the COI are more reliable (Grinsted et al., 2004).

3.4.1. Variability (High Power) of Data in SWE1 and ENSO/PDO

From the standardized time series of SWE1 (Figure 3.2a), it was observed that SWE
across the western U.S. experienced large fluctuations during the study period. The wavelet
power spectrum (Figure 3.2a) generated from the CWT showed higher variability with
significance around the 2-year band in 1963, in the 2-to-3-year band from 2008 to 2013, in the 3-
to-5-year band from 1974 to 1982, and in the 11-to-15-year band from 1973 to 2011. The
significant variability observed in the 11-to-14-year band showed the highest power in the
wavelet power spectrum. This was also observed in the global wavelet spectrum, which showed

a spike near the 11-to-14-year band.

The wavelet power spectrum (Figure 3.2b) resulting from the CWT of ENSO showed the
presence of a few discrete but significant intervals during the study period. Significant variability
was observed in the 2-to-4-year band from 1995 to 2000 and from 2008 to 2012, in the 3-to-4-
year band from 1969 to 1971, in the 3-to-6-year band from 1977 to 2007, and in the 11-to-13-
year band from 1990 to 2011. The highest power was observed in the 3-to-6-year band. In
addition, the global wavelet spectrum picked higher power in the 3-to-6-year band and around

the 11-to-13-year band.
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(a) Standardized time series of SWEI (b) Standardized time series of ENSO
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Figure 3. 2: Standardized time series, wavelet power spectra, and global wavelet power spectra of a) SWEL, b)
ENSO, ¢) PDO1, and d) PDO2. Red (blue) represents stronger (weaker) power. The thick black contour line marks

the 5% significance level against red noise.
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PDOI and PDO2 both showed similar bands of significance across the study period
(Figures 3.2c and 3.2d). Significant high power was observed in the 2-to-4-year band from 1968
to 1977, in the 2-to-3-year band from 1997 to 2002, and in the 8-to-10-year band from 1990 to
2011 (from 2003 to 2013 in PDO2). PDO2 also showed the presence of significantly high power
in the 5-to-6-year band from 1991 to 1998. PDO1 showed high power in this band as well but
was not found to be significant. Global wavelet spectra picked the higher power around the 8-to-
10-year band for both PDO1 and PDO2. The PDO2 global spectrum showed a small peak near
the 5-to-6-year band. Both PDO1 and PDO2 showed higher power above the 16-year band,
which were observed in the wavelet power spectra and global wavelet spectra; however, they
were not found to be significant. Comparison among the independent datasets, i.e., SWEI,
ENSO, and PDO, showed that there is considerable overlap in terms of the time and frequency of
their higher variability zones. To detect their common power or covariance, XWT was applied

between SWE1 and ENSO, SWE1 and PDO1, and SWEI and PDO2.

3.4.2. Covariance (High Common Power) between SWE1 and ENSO/PDO

The XWT between ENSO and SWEI (Figure 3.3a) showed presence of significantly high
common power in the 2-to-3-year band from 1973 to 1977, from 1994 to 2000, and from 2007 to
2012, in the 3-to-6-year band from 1968 to 1985, in the 5-to-7-year band from 2001 to 2012, and
in the 10-to-15-year band from 1973 to 2012. The relative phase relationship between the two
time series is shown by the arrows in the XWT power spectrum. Except for a significant period
from 2007 to 2012 in the 2-to-3-year band, all the other timescale bands across different time
intervals had arrows pointing towards the right. A rightward (leftward) arrow indicates an in-
phase (anti-phase) relationship between the two time series. Figure 3.3a indicates that during the

study period, an in-phase relationship between ENSO and SWEI was dominant, which suggests
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they were moving in the same direction at the same time. The arrows in the significant intervals
showed a tendency of pointing upwards, indicating a lag between ENSO and SWEI. A vertical
upward-pointing arrow meant that ENSO led SWE1 by 90° or one-quarter (six months to 4 years
depending on the timescale band). Whereas, a vertical downward-pointing arrow indicates a lag
of 270° or three-quarter (18 months to 12 years depending on the timescale). As it takes time for
the atmosphere to adjust and for storm tracks to redirect and change their productivity, the

detected lead reasonably aligns with the currently-understood physical mechanism.

From the XWT between PDO1 and SWEI, high common power was observed around the
3-year band from 1962 to 1965, in the 2-to-3-year band from 1971 to 1979 and from 1997 to
2004, in the 5-to-7-year band from 2009 to 2012, and in the 9-to-12-year band from 1989 to
2010 (Figure 3.3b). High common power in the 12-to-16-year band (and beyond) was present
from 1975 to 1995 but was not found to be statistically significant. The arrows indicating a phase
relationship were mostly observed to be pointing right (indicating an in-phase relationship),
except for an interval from 1962 to 1965. The presence of arrows that had a tendency of pointing

upwards suggested that PDO1 led the SWEI in many instances.

The results suggested that the phase relationship between PDO1 and SWE1 was not
consistent or uniform, as the direction of the arrows varied across the study period. The XWT of
PDO2 and SWEI did not reveal any new information as they were quite identical in terms of the
location of significant covariance and relative phase relationships. Hence, those results have not

been reported in the manuscript.
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Figure 3. 3: Cross wavelet spectra between a) SWEI and ENSO and b) SWE1 and PDO1. Wavelet coherence
spectrum between ¢) SWE1 and ENSO and d) SWE1 and PDO1. The thick black contour line delineates a 5%
significance level against red noise. Red (blue) represents stronger (weaker) power. The COI, which potentially
could distort the picture around the edges, is shown by lighter shades. The arrows represent the relative phase
relationship between the two time series. Right (left) pointing arrows show an in-phase (anti-phase) relationship,
while vertically upward (downward) arrows show that ENSO/ PDO1 leads SWE1 by 90° or one-quarter (270° or

three-quarter).
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3.4.3. Coherency (Significant Correlation) between SWE1 and ENSO/PDO

The WTC between ENSO and SWEI1 showed the presence of high correlation in the 10-
to-16-year band throughout the entire study period, i.e., 1961 to 2016 (Figure 3.3c). Correlations
varied from 0.8-to-1.0 in this continuous zone. At the significance level chosen in this study (5%
against the red noise), a correlation of 0.7 was considered to be significantly high. Correlations
as high as 1.0 also was observed in the lower bands, e.g., in the 2-3-year band from 1971 to 1979
and from 1998 to 2001. High correlation values, in the range of 0.7-to-0.8, were observed in the
6-to-8-year band from 2007 to 2016. Instances of high correlation — in the range of 0.6-t0-0.7 —
were observed at multiple intervals across the study period, especially in the 4-to-6-year band;
however, they were not found to be statistically significant against the red noise using the Monte
Carlo approach. The arrows, during the significant intervals, were all observed to point towards
the right, indicating an in-phase relationship between ENSO and SWEI. In addition, arrows were
observed to show a higher tendency to point upwards, especially from 2000 to 2016. The results
indicated that ENSO led SWEI1 by a phase angle of as high as 90°. Results also indicated that an
increase (decrease) in the ENSO index caused an increase (decrease) in SWEI across significant

intervals with high correlation.

The WTC between PDO1 and SWEI1 (Figure 3.3d) did not show the presence of a
continuous significant band as it was observed in the WTC between ENSO and SWE1. PDOI
and SWE1 were found to be highly correlated in the lower bands, mostly below the 4-year band.
The highest correlation — in the range of 0.8-to-1.0 — was observed in the 2-to-3-year band from
1972 to 1979, from 2001 to 2003, from 2011 to 2016, and in the 2-to-4-year band from 1961 to
1964. A high correlation in the range of 0.7-t0-0.8 was observed in the 8-to-10-year band from

1988 to 1994. There were instances of higher correlation in the range of 0.6-t0-0.8 in the 2-to-3-
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year band, in the 6-to-8-year band, and beyond the 16-year band; however, they were not found
to be statistically significant. The arrows were observed to point towards the right, except for a
significant interval from 1961 to 1964. There were instances where arrows pointed vertically up,
which indicated that PDO1 led SWE1 by a phase angle of 90°. In a few instances, the arrows
pointed slightly downward. The results suggest that PDO1 and SWE1 changed simultaneously in
some of the significant intervals where PDO1 led SWEI, though the relative phase relationships
were not consistent or uniform. The WTC of PDO2 and SWE1 (not shown here) did not reveal
any new information — in fact, the WTC of PDO2 and SWE1 was found to be quite identical to

the WTC of SWE1 and PDO1.

3.4.4. Coherency (Significant Correlation) between regional SWE and ENSO/PDO

Similar to the WTC between ENSO and SWE1, WTCs between ENSO and the regional
SWEs revealed the presence of higher correlation across the entire study period for PN and CA
in the 8-to-16-year band (Figure 3.4). Unlike SWE1, GB and UC showed the presence of higher
correlation (as high as approximately 1.0) of longer duration (at multiple intervals from 1961 to
2000) in the lower timescale bands (below and around the 4-year band). LC and RG showed a
similar pattern of correlation with ENSO as was observed with SWEI1, though the regional
correlation bands showed less duration and lower correlation values. The relative phase
relationships across different regions were observed to vary significantly. The direction of the
arrows did not show any recognizable pattern, though the arrows in the significant zone of a
particular region were observed to be showing the tendency of pointing towards the same

direction.
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WTCs between PDOI1 and the regional SWEs of GB, UC, and RG showed a similar
pattern (Figure 3.5) to what was observed in the WTC between PDO1 and SWEI1. PN showed
much higher correlation compared to any other region in the lower timescale bands (in the 2-to-
4-year and 4-to-6-year band) at multiple intervals. The presence of high correlation — as high as
approximately 1.0 — was observed in the 2-to-6-year band from 2010 to 2016 in PN. CA and LC
showed the presence of higher correlation of significant intervals (from 1970 to 1988, from 1973
to 1982, and from 1990 to 2000) around the 4-year and 8-year bands, which were not observed
with SWEI. The relative phase relationships were observed to vary across the regions without
showing any recognizable pattern. GB, UC, and RG did not show much presence of higher
correlation. Regions with a lower elevation of stations and close to the ocean, e.g., PN, CA, and
GB, were observed to show a higher correlation with both ENSO and PDO1 compared to the
regions with a higher elevation of stations and far from the ocean (inland), e.g., UC and RG

(Figures 3.1, 3.4, and 3.5).
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3.5. Discussion

From the CWT analyses, it was observed that SWE1 had the highest variability in the 11-
to-15-year band during a significantly longer duration, from 1973 to 2011 (Figure 3.2a);
however, the power was observed to reduce gradually near both the tails of the time series,
suggesting less variation during those intervals; the results near the ends of a wavelet power
spectrum are also less reliable due to the effect of COI (Grinsted et al., 2004). In addition, there
was the presence of higher variability in the lower bands, but of much less duration. It can be
inferred from these results that SWE in the western U.S. experienced the highest variation every
11-15 years. A similar pattern of high power was observed across the study period in the ENSO
CWT (Figure 3.2b). Although the duration of significant variability was less in the ENSO CWT
— from 1990 to 2011 — the entire study period showed high variability in the 10-to-16-year band.
Moreover, the patterns observed in the time-frequency power spectrum were similar in the higher
bands for SWE1 and ENSO CWTs (Figures 3.2a and 3.2b). ENSO showed the highest variability
in the 3-to-6-year band, which may be attributed to the frequency of the ENSO cycle (Bayazit,
2015). Both PDO1 and PDO2 showed the highest variability in the 8-to-10-year band and also
beyond the 16-year band; although bands beyond the 16-year were not found to be statistically
significant. The tendency of showing variability in the higher bands could be explained by the
decadal nature of PDO cycle (Trenberth and Fasullo, 2007). The results indicated overlaps in the
time-frequency spectra of SWE1 and ENSO/PDO variability across the study period, especially

in the higher bands.

The XWT between ENSO and SWE1 had the highest covariance in the 10-to-15-year
band from 1973 to 2012 (Figure 3.3a). This was inferred from their individual CWTs. The results

showed high common power in the 3-to-6-year and the 5-to-7-year bands. The relative phase
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relationship showed that ENSO led SWEI in all the significant intervals at different frequency
bands. The arrows also suggested that in the majority of the cases, the change in SWE1 and
ENSO were in-phase, suggesting a simultaneous change. Hence, it can be interpreted that change
in the ENSO index, with a certain lag, caused SWE to change in the same direction across the

western U.S. over a long duration.

The XWT between PDO1 and SWEI revealed that these two time series experienced the
highest covariance in the 9-to-12-year band and beyond the 16-year band (Figure 3.3b);
although, the bands beyond the 16-year were not found to be statistically significant. PDO2 had
similar results as PDO1. The relative phase relationship between PDO1 and SWE1 was not
found to be as uniform as ENSO and SWEI. The lag-response behavior of PDO1 and SWET1 did
not show any particular pattern. There were instances where PDO1 led SWE with opposing
arrows suggesting in-phase and anti-phase relationships in the same frequency band. It was not
possible to make any conclusions about the phase relationship of PDO1 and SWEI1 from the
obtained results. There were certain intervals in the 8-to-12-year band and in the 2-to-3-year
band where both ENSO and PDO1 were observed to show high covariance with SWEI,;
however, the duration of intervals in the lower bands was much less compared to the higher

bands.

The results of ENSO and SWE1 WTC revealed that the most significant timescale band
influencing the two time series was the 10-to-16-year band. The entire study period was found to
be significant in that particular frequency band. Lower bands, e.g.., the 2-to-3-year and the 6-to-
8-year bands, also showed a high correlation (Figure 3.3c); although the durations were not
found to exceed 10 years in any of the instances. A high correlation was observed in the 4-to-6-

year band as well but was not statistically significant. There was much similarity between the
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XWT and the WTC of ENSO and SWEI, except for the presence of a continuous zone in the 10-
to-16-year band that lasted across the entire study period observed in the WTC. Correlation in
certain intervals — e.g., all of the 10-to-16-year and in some 2-to-3-year band — was as high as
approximately 1.0. This suggested a direct relationship between ENSO and the western U.S.
SWE. The relative phase relationship suggested that ENSO led SWEI1 by certain lag; in many
cases, they both changed simultaneously in the same direction. This relationship also was

observed in the XWT analysis of SWE1 and ENSO.

The WTC between PDO1 and SWEI1 did not show much presence of significant intervals
across the study period (Figure 3.3d). PDO2 had similar results as PDO1. There were intervals of
high correlation — as high as approximately 1.0 — in the lower bands (below the 4-year band);
however, the duration of the intervals was not found to be more than 7 years in any of the
instances. The 8-to-9-year band showed the presence of high correlation, in the range of 0.7-to-
0.8; though, the duration was only a few years. Bands beyond the 16-year also showed the

presence of high correlation but were not found to be significant.

The comparison between the two WTCs revealed that ENSO and PDO were both
correlated to SWET only in the lower timescale bands (below the 4-year band). The results
revealed that ENSO had a much higher correlation with SWE1 than did PDO throughout the
study period. The results obtained in the study supports the findings of Beebee and Manga
(2004), who studied the relationship of ENSO and PDO with the runoff generated from

snowmelt in the state of Oregon and found ENSO to have a higher correlation than PDO.

The WTCs obtained from ENSO/PDO1 and the regional SWEs suggested significant

variation in terms of their association at various timescales across the study period (Figures 3.4
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and 3.5). The regional analyses suggested that even though ENSO/PDO1 was correlated with
SWEI in certain timescale bands across the study period, the individual hydrologic regions
experienced a unique association with both ENSO and PDO1. Hydrologic regions comprising of
PN, GB, and CA showed a much higher correlation with ENSO compared to the other regions.
PN was found to be most significantly correlated with PDO1. Also, it was noted that the regions
having stations at lower elevations (Figure 3.1) had a higher correlation (stronger association)
compared to the regions with stations at a higher elevation. Besides the effect of elevation, such
outcome may also be the result of other factors such as the number of stations per region, the
percentage of data variability explained by the PC1, and the spatial location of the region (close
to the ocean or inland). Studies suggest that the elevation of the basins, which is sensitive to both
air temperature and precipitation, also affect the accumulation of snow and the timing of
snowmelt (Cayan, 1996; Dudley, 2017). Analyses of the individual stations within a region can

provide a better explanation of the effect of elevation on the observed correlation.

The current analysis did not calculate the exact time lag between ENSO/PDO and SWE
from the relative phase relationship indicated in the wavelet power spectra though the results
showed that both the indices, especially ENSO, had a uniform lagged relationship with the
western U.S. SWE. ENSO, and in some cases PDO, was found to be leading SWE by a few
months to close to a decade. Cayan et al. (1999) and Hanson et al. (2004) studied these lag-
response behaviors and concluded that the major reasons causing these lags were the cumulative
effects of the nature of oceanic-atmospheric fluctuations, the formation and dynamics of winds,
and the time required for the formation and melting of snow. Some studies (Trenberth and
Hurrell, 1994; Pozo-Vazquez et al., 2001) investigated these lags between climate indices and

surface hydrology and found delays from a few months to a few years. Since a lead-time
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approach was adopted (the time series were pre-lagged) in this study — e.g., DJF mean of
ENSO/PDO and 1 April SWE — the underlying lag expressed by a 90° phase difference did not
exactly express a quarterly lag (six months to 4 years depending on the timescale band), rather

expressed a lag of slightly higher duration.

The presence of the high correlation in the 10-to-16-year band between ENSO and the
western U.S. SWE suggests that they both changed in the same direction (with certain lags)
across the entire study period. The presence of such temporal relationship may be attributed to
the frequency of the ENSO cycles. On the other hand, PDO was not found to be highly
correlated with SWE except for a few short intervals. The results suggested the presence of
higher association beyond the 16-year band in PDO; however, they were not found to be
statistically significant. It should be noted that phases of PDO change over multiple decades;
therefore, it is possible that timescales at higher bands may have higher correlations with SWE.
Since this study analyzed timescales up to the 16-year band only, significant intervals at higher
timescales may have been missed. The current study did not analyze beyond the 16-year band
since the results beyond this band had high uncertainty due to the limitation of the length of the
period of record. Analyzing a longer-reconstructed time series may allow evaluating the
associations at higher timescales with greater certainty. The findings of the current analyses may
result in future research to help better understand the lag-response behavior between the climate
indices and SWE at each timescale band. Additionally, the sites (stations) within a particular
hydrologic region may be analyzed independently to evaluate the effect of topography in greater
details. Methods, such as coupling of wavelet with the artificial neural network, which allows
multiple inputs to understand the response of a signal, can be an option for such analysis.

Understanding the relationship between other regions of the Pacific Ocean and the western U.S.
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SWE can also be potential future research. Since the obtained results are purely statistical in
nature, they need to be interpreted in context and with a proper understanding of wavelet power

spectra before concluding any specific physical relationship.

Based on the results obtained from the analyses, the major contributions of the study are:

e Use of SNOTEL (1 April SWE) data from 323 western U.S. stations with a time period
spanning 56 years: a major extension in the number of stations covered and the length of
data analyzed compared to previous studies using similar datasets.

e A wavelet approach in evaluating the correlation between ENSO/PDO and the western
U.S. SWE at multiple frequency bands: an approach that has not received much attention
with such datasets in the documented literature.

e A hydrologic-region-based analysis to evaluate the regional change of SWE as a response
to the change in ENSO/PDO: the results showed how significantly the response of SWE

may vary among the adjacent regions.

3.6. Conclusions

The study examined the correlation between ENSO/PDO and the western U.S. SWE over
a study period of 56 years using CWT and its derivatives. Application of such methods allowed
the study to analyze and correlate regional SWE with oceanic-atmospheric climate indices across

multiple timescale bands. The analysis revealed the following:

e ENSO, compared to PDO, had a much higher influence on SWE.
e The temporal associations were observed to be stronger in the higher timescale (lower

frequency) bands.
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e The effect of ENSO/PDO varied significantly across the adjacent hydrologic regions.
e Regions close to the ocean (inland) and lower (higher) in elevation were observed to

show a higher (lower) correlation with ENSO/PDO.

The analyses conducted in this study highlighted the need to work with snow data at even
finer spatial resolution since the variation in response among the adjacent regions were observed
to be significantly high across the mountainous western United States. Understanding such

relationship of snowpack formation and climate indices can be beneficial to climate forecasters

and regional water managers.
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CHAPTER 4: SPATIOTEMPORAL TREND, SHIFT, AND ENTROPY ANALYSES OF
TEMPERATURE, PRECIPITATION, AND POTENTIAL EVAPORATION OF NORTH

INDIAN MONSOON DURING THE ENSO PHASES

4.1. Introduction

Studies on extreme climate events, i.e., droughts and floods, across the world, have found
that such extremes are likely to be associated with the anomalies in zonal sea surface temperature
(SST) fluctuations observed in the oceans. In turn, these fluctuations, coupled with the changes
in global and regional atmospheric pressure systems, formation of surface winds, and moisture
sources & evaporative demand, cause severe changes in the temperature and precipitation
patterns (Diffenbaugh et al., 2015; Seager et al., 2015). Studies also suggest that these extremes
are likely being aggravated by global warming (Williams et al., 2015; Yoon et al., 2015). The
recent California drought has been of great interest to many climate researchers, (e.g., Griffin
and Anchukaitis, 2014; Robeson, 2015). A study by Wei et al. (2016) identified major
atmospheric circulation patterns affecting precipitation in California. However, the authors
indicated that the contributions from the various components of the hydrologic cycle are yet to
be properly understood. As a result, besides analyzing SST anomalies and precipitation patterns,
recent studies have incorporated hydro-climatological variables like moisture sources,
evaporative demand, and temperature in order to understand these climate extremes more
thoroughly (Shukla et al., 2015; Wei et al., 2016; Bhandari et al., 2018). In addition, various
combinations of these variables have been found to show significantly different and sometimes
inverse correlations with certain climate extremes. A few cases — for example, lower moisture

with higher temperature — found to affect the extremes even more severely (Shukla et al., 2015).
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Several studies have presented ample evidence to support that climate change has
immensely intensified the hydrologic cycle (IPCC, 2013, 2014, and 2019; Carrier et al., 2016;
Tamaddun et al., 2018a). This intensification has raised questions (Dirmeyer and Brubaker,
2006; Huntington, 2006; Kramer et al., 2015; Tamaddun et al., 2018b) such as, what is the
distribution of this intensification across the different components of the water cycle? How do
changes in the amount of precipitation affect other components? What are the consequences of
these changes in climate patterns? Some researchers have suggested that increased (decreased)
precipitation can cause increased (decreased) vegetation, which in turn may cause an increase
(decrease) in evapotranspiration (Levis et al., 2000; Bounoua et al., 2010). Other studies have
suggested that increased evapotranspiration resulting from increased vegetation may potentially
affect the CO; concentration, which in turn can act as a cooling mechanism to reduce the
temperature (Sellers et al., 1996; Guillevic et al., 2002; Bonan, 2008). These studies have shown
how the dynamics among hydro-climatological variables might bring about a change in the long-
term patterns and have reinforced the need for multi-variable analyses to predict and confront

climate extremes (Ahmed et al., 2018; Tamaddun et al. 2019c).

Out of the many different regions of India, the northern region, named as North India in
the following sections, currently is of particular interest to many climate researchers (Tiwari et
al., 2016a and 2016b; Khare et al., 2016). North India is situated in the Earth’s northern
temperate zone (Singh, 2010), and has experienced major climate diversity over the years
(Dimri, 2013; Rathore et al., 2013; Abeysingha et al., 2016). Temperatures in North India have
been recorded as varying over a wide range, from below freezing temperatures in some states to
over 50 °C in the deserts (Singh, 2003; Kaul, 1998; Rowell, 1980). Rainfall and snow in North

India result from two major weather patterns, i.e., the western disturbances and the Indian
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monsoon. The western disturbances, originating from the Atlantic Ocean as well as the Caspian
and the Mediterranean Seas, are called extratropical weather phenomena; they carry moisture
towards the east over North India (Datta and Gupta, 1968; Dimri, 2004; Wang, 2006). On the
other hand, monsoon, a large-scale circulation pattern lasting from June through September each
year, carries moisture of the humid southwest summer wind from the Indian Ocean towards the
north and provides the vast majority of the annual rainfall to the entire Indian subcontinent. As a
result, understanding the behavior of monsoon has been of major interest to climatologists for

many years.

The India Meteorological Department (IMD) has observed and recorded monsoon
patterns for several decades and has developed multiple stochastic models to forecast the
initiation, recession, and strength of the Indian Summer Monsoon Rainfall (ISMR). Out of the
many different factors affecting ISMR, the El Nifio Southern Oscillation (ENSO) has been
considered to be one of the most significant large-scale forces that influence the behavior of
ISMR (Ju and Slingo, 1995; Kumar et al., 1999). ENSO is a natural cycle, represented by an
index, which records the SST fluctuations originating from the strengthening and weakening of
the trade winds (Tamaddun et al., 2017a and 2019b). It is observed in the tropical Pacific and
affects the surrounding oceanic-atmospheric systems (Ropelewski and Halpert, 1986: Kahya and
Dracup, 1993; Tamaddun et al., 2017b and 2017c). Shifts in pressure cells and changes in their
intensity cause trade winds to get stronger or weaker. This results in changes in the locations and
velocities of oceanic currents — both of these cause upwelling of colder water from the bottom of
the ocean, and move warmer ocean-surface-water in specific directions, for example, east or west
near the equator in the case of ENSO. Hence, SST fluctuations in multiple locations of the

Pacific Ocean are initiated. ENSO consists of two phases, namely, El Nifio, which is the warmer
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(positive) phase, and La Nifia, which is the cooler (negative) phase (Sagarika et al., 2016). Each
phase can last from a few months to a year, and they occur every two to seven years. From 1950
to 2012, ISMR was found to be above average or around average in almost all the La Nifa years.
Contrarily, five of the most prominent droughts in India during that period coincided with the El
Nifio years (Kumar et al., 2006). A monsoon followed by El Nifio does not necessarily result in
poor rainfall all the time; however, as studies suggest, there might be other climate and weather
factors, e.g., the extent of Himalayan/Eurasian snow, which influences the circulation of
monsoon (Kumar et al., 1999; Tamaddun et al., 2017d). Studies have also suggested that other
complementary factors to ENSO may affect ISMR, e.g., the Indian Ocean Dipole (IOD),
complex coupling and dynamics of multiple variables, and variations in heat flux over different

land masses (Webster and Yang, 1992; Ashok et al., 2001; Wang et al., 2005).

The tropical Indian Ocean experiences a basin-wide change after an ENSO event. In the
north equatorial Indian Ocean, this change starts in late winter (early spring) and continues until
summer. The prolonged influence of ENSO continues into the following seasons, and eventually
causes climate anomalies in Southeast Asia, especially during summer (Yang et al., 2007; Xie et
al., 2009). Analyzing the phase relationships between ENSO and ISMR, Torrence and Webster
(1999) found significant correlations across several timescales, with stronger coherence during
intervals of higher variance. Ashok et al. (2001) found that ENSO, along with 10D, affected the
rainfall amount immensely from 1958 to 1997. Other researchers observed that IOD could
reduce the effect of ENSO on ISMR based on the different phased relationships (Saji et al., 1999;
Ashok et al., 2004). This explains why all the years associated with El Nifio did not cause a
drought in India. Krishnamurthy and Goswami (2000) found a strong correlation between inter-

decadal ISMR and ENSO variations. In addition, this study explained the possible reasons for
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major regional and equatorial circulation patterns, e.g., Hadley circulation and Walker

circulation, and how their anomalies caused these variations.

Kumar et al. (2006) suggested that the SST anomalies in the central (eastern) equatorial
Pacific strengthen (weaken) the likelihood of droughts during the monsoon. Other studies
observed multi-scale, e.g., interannual, quasi-decadal, and decadal variations, relationships
among ISMR, Indian Ocean oscillations, and the ENSO phases (Reason et al., 2000; Allan et al.,
2003; Gadgil et al., 2004). Besides monsoon rain, temperature variations of the tropical Indian
Ocean, along with the prolonged effects of ENSO and the associated heat flux over India, were
studied by Wang et al. (2005) and Xie et al. (2009). Yang et al. (2007) concluded that El Nifio
not only affects SST fluctuations of the Indian Ocean but also plays an important role in the
summer climate variability across the Indo-Western Pacific basins. Klein et al. (1999) found that
El Nifo alters the cloud cover and evaporation configuration of atmospheric circulations, which
in turn affect the heat flux of the surrounding basins. Loo et al. (2015) observed major shifts in
the intensity and initiation of monsoon after the 1970s, which likely were affected by anomalies

in global temperature and precipitation.

Analyzing anomalies in pressure, temperature, wind, and cloud cover over the Indian
Ocean in the different phases of ENSO during monsoon, Reason et al. (2000) emphasized that
multi-variable analyses need to be conducted across various temporal scales, e.g., annual and
seasonal, for a better understanding of the physical relationships and correlation patterns. Some
combinations of the interconnected hydro-climatological variables and their extremes, such as
lower precipitation levels with higher temperatures, have the potential to cause severe adversity
on the hydro-ecological as well as on the socio-economic systems, even though the individual

variables may not indicate extreme conditions (Mazdiyasni and AghaKouchak, 2015; Tamaddun
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et al., 2017¢). Considering the advantages of multi-variable analyses as a major motivation, the
current study focused on understanding the influence of ENSO on the spatiotemporal change
patterns of three hydro-climatological variables — temperature, precipitation, and potential
evapotranspiration (PET) — during the monsoon season across North India. In addition, this study
determined the all-year (century-wide) trend and shift patterns of the selected variables from
1901 to 2002. The Mann-Kendall test (Mann, 1945; Kendall, 1975) and Pettitt’s test (Pettitt,
1979) — both nonparametric in nature — were used to detect the presence of trends and shifts,
respectively. To evaluate the distribution (apportionment) of the temporal variability of the
historical changes on an annual and seasonal scale, the concept of entropy was applied, which
quantitatively measured the dispersion, disorder, and variability in the long-term trends
(Shannon, 1948). Moreover, the study provided an extensive literature review of the relevant
studies highlighting the relationships between monsoonal change patterns and the ENSO phases
and applied the multi-variable analyses approach to provide insights that may explain some of
the research questions discussed earlier. The obtained results may help practitioners to prepare
for flood and drought risks as a response to the changes in ENSO phases. The major

contributions of the study are:

e Evaluation of the long-term trend and shift patterns of temperature, precipitation, and
PET across North India at various ENSO phases using non-parametric statistical tests.

e Determination of the spatiotemporal relationships between the selected variables during
monsoon and at each of the monsoonal months over a century-wide period.

e Comparison between the major shift points during monsoon and the phases of ENSO,

which might have resulted in extreme climate events, throughout the study period.
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e Analyses of apportionment entropy to quantify how the detected variations were
distributed temporally over the years (annually) and during the months (seasonally) of

monsoon along the study area.

4.2. Study Area and Data

According to the Geological Survey of India (GSI, 2016), eight states, namely,
Chandigarh, Delhi, Haryana, Himachal Pradesh, Jammu & Kashmir, Punjab, Uttarkhand, and
Uttar Pradesh, officially form the northern region of India. These eight states consist of 147
districts. Appendix 4 (Table A4.1) contains the names of the individual districts in each of the
states. As reported by the IMD, the monsoon or the rainy season lasts from June to September.
Temperature, precipitation, and PET data were obtained from 1901 to 2002 on a monthly mean
basis for 146 districts as data for one of the districts were unavailable (Figure 4.1). The data were
accessed through the online database of the India Water Portal (IWP, 2016). IWP database
contains data in downloadable “comma-separated values” format (more commonly known as the
CSV format) after initial error correction. Later, the downloaded data were standardized by
subtracting the mean and dividing by the standard deviation. Moreover, the methods used in the
study (described in the next section) are resilient against outliers and missing data points, which
makes them appropriate for the type of analyses adopted in the study. The trend (shift) patterns
of the selected variables were evaluated during monsoon at four different combinations of the
ENSO phases, namely, (1) the El Nifio years, (2) the La Nifa years, (3) the non-El Nifo years
(either the La Nifia or neutral years), (4) and the non-La Nifia years (either the El Nifio or neutral
years). The ENSO (Nifio 3.4) indices used in this study (Figure 4.2) were accessed through the
online database of the United States National Oceanic and Atmospheric Administration (NOAA,

2015). During the study period of 102 years, there were 37 instances that were found to be
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neutral years, 32 years were found to be El Nino years, and 33 instances were found to be La
Nina years. Hence, a total of 70 instances were non-El Nifio years, while a total of 69 instances

were non-La Nifia years.

Besides the trend and shift patterns of the selected variables at each of the four ENSO
phases mentioned earlier, the all-year trend and shift patterns during the monsoon as well as
during each of the monsoonal months were evaluated. For the temperature and PET trends and
shifts, the monthly mean of the monsoon and of each of the monsoonal months was analyzed.
For precipitation, the monthly totals were used. The annual and seasonal apportionment entropy
were evaluated using the annual data — the sum of all the monthly means, and the seasonal data —

the monthly means of each of the monsoonal months.
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4.3. Methodology

4.3.1. Trend and Shift Tests

Two non-parametric tests — namely, the Mann-Kendall (MK) trend test (Mann, 1945;
Kendall, 1975) and the Pettitt’s test (Pettitt, 1979) — were used to detect the presence of trends
and shifts, respectively. A trend shows the past behavior of a variable that is more likely to be of
a monotonic nature and may continue in the future unless an anomaly occurs (Zhang et al., 2001;
Tamaddun et al., 2016). The MK trend test is based on the null hypothesis that there is no trend
in the time series. The test determines the direction of the trend, which can either be an increase
(positive), decrease (negative), or absence of a trend, from the sign of a signum function. In
contrast, a shift is an abrupt change in the data distribution, which remains unaltered until the
next change occurs (Mauget, 2003; Kalra et al, 2017). Pettitt's test detects the shift in a time
series by testing the anomaly between the mean of two independent samples from the same time
series. The direction of the shift, which can be either positive (increasing), negative (decreasing),
or an absence of a shift, is determined from the maximum and minimum probability estimates
based on the significance level used. Non-parametric tests are better suited for hydro-
climatological data distributions since such data distributions are more likely to be nonstationary
and nonlinear in nature. The resilience against missing data points and robustness against the
initial assumption of a normal distribution makes non-parametric tests a preferred choice over
traditional statistical tests that have an inherent assumption of nonstationarity and nonlinearity
(Milly et al., 2008; Sagarika et al., 2014). Both the tests have been recommended in earlier
studies due to their advantages over the other test methods as well as for their higher accuracy.
Further remarks about these tests can be found in the works of Lins and Slack (1999), On6z and

Bayazit (2003), Burn (2008), and Villarini et al. (2009). Several modified versions of the MK
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test, named MK2, MK3, and MK4, accounting for different types of autocorrelation or
persistence, are found in the literature (Tamaddun et al., 2016; Sagarika et al., 2014; Kumar et
al., 2009). These modified MK tests were also utilized in this study to analyze the trends.
However, the results did not produce noticeable differences from the original results. Hence,
descriptions of such methods have been omitted from the study. The lack of noticeable
differences from the original test method suggests that autocorrelation or persistence had

minimal influence on the datasets used in the study.

To calculate the slope (rate of change or change per unit time) of the observed trends, the
Theil-Sen approach (TSA) was employed (Theil, 1950; Sen, 1968). The TSA is nonparametric in
nature, which makes it appropriate to be applied in conjunction with the MK test. Moreover, the
TSA determines the median slope of all possible pairs, which makes the test robust against
possible outliers. Walker’s test (Wilks, 2006) was used to determine the global (field)
significance of each of the eight states consisting of multiple districts. A confidence interval of
90% (p < 0.10) was used for the statistical significance tests performed in this study. All the

analyses were conducted using the programming platform MATLAB.

4.3.2. Entropy Test

Entropy measures the variance in the temporal distribution of a variable (Mishra et al.,
2009). According to Shannon (1948), entropy measures the dispersion (range), uncertainty,
anomaly, and variation in data. Such a measure can help distinguish between trends of similar
types based on their uniformity over time. A review of entropy applications in the field of
hydrology and water resources can be found in the work of Singh (1997). Several indices of

entropy can be calculated to measure variability in data (Mishra et al., 2009). For example, while
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studying the dynamics in complex systems, such as climate, recent studies have used a new time
domain termed natural time (Sarlis et al., 2013; Varotsos et al., 2013) in which the entropy is
defined as a dynamic property that captures the time arrow, while the corresponding entropy
change under time reversal is used to identify the occurrence (from approaching state to critical
state) of extreme scenarios including earthquakes (Sarlis et al., 2018a and b), ENSO events
(Varotsos et al., 2016a and b), and quasi-biennial oscillations (Varotsos et al., 2018). In this
study, apportionment entropy was used to evaluate the variability in the annual and seasonal
(monsoonal) temperature, precipitation, and PET data. The following formulations are based on
the works of Shannon (1948) and Mishra et al. (2009). The analyses were conducted using the

programming platform MATLAB.

The total annual (seasonal) aggregate, R — aggregated over the study period of 102 years
(over the 4 months of monsoon) — of a variable, (i.e., temperature, precipitation, and PET) can be

expressed as:

R=>"r @.1)

n
i=1
where r; is the annual aggregate amount of a variable during the i year of the study

period (monthly amount of a variable during the i month of the season), with i = 1 to 102 for

annual apportionment (i = 1 to 4 for seasonal apportionment).

The apportionment entropy (AE) of a variable can be written as:

AE = —Z(Ti/R) log>("/g) (4.2)
i=1
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The annual apportionment entropy (AE.) measured the temporal variability in the annual
dispersion of the variable over the study period. Equation 4.2 denotes that when a variable was
evenly distributed, on an annual scale, over the study period of 102 years, with a probability of
1/102, AEa had the maximum value of log2102 (or 6.6724). If the apportionment occurred during
only one out of the 102 years, with a probability of 1, AE. would take the minimum value of

Z€10.

Similarly, the seasonal apportionment entropy (AEs) for the monsoon season was
calculated using the June through September monthly mean data. This value varied from zero to
log24 (or 2.0). AE; for all the districts were calculated for each of the 102 years during the study
period. For the purpose of representation, the mean AE; of the 102 years for each of the districts

are reported in the study.

4.4. Results and Discussion

This study investigated the change patterns in North Indian hydro-climatological
variables — i.e., temperature, precipitation, and PET — influenced by the various ENSO phases
during the monsoon season. Initially, trend (shift) patterns were determined in order to observe
how the different combinations of the ENSO phases were associated with the change patterns.
Later in the study, the all-year trend (shift) patterns were detected during monsoon and at each of
the monsoonal months. Finally, to quantify the spatiotemporal variation of the variables, annual
and seasonal (monsoonal) apportionment entropies were calculated. Modified MK tests, adjusted
for persistence as per Kumar et al. (2009), were applied to the data as well. The results did not
show any significant deviation from the standard (original) test results. Hence, only the findings

from the standard methods are reported in the study.
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4.4.1. Temperature Change Patterns

4.4.1.1. Changes Associated with ENSO

The spatial distribution of trends suggested that the western regions, i.e., Chandigarh,
Haryana, and Punjab, as well as a significant portion of Uttar Pradesh, experienced a decreasing
trend in all the ENSO phases (Figure 4.3). States, such as Himachal Pradesh, Jammu and
Kashmir, and Uttarkhand, did not show much of a presence of significant trends except during
the El Nifio years. The spatial distribution of districts with significant trends during the El Nifio
(La Nifia) and non-La Nifa (non-El Nifio) years were found to be comparable. Districts with
significant decreasing trends during the El Nifio (La Nifa) years were found to be the maximum
(minimum) among the four ENSO phases analyzed in the study. An increasing trend was
observed only during a neutral year. Table 4.1 summarizes the results in terms of the number of
districts with significant trends. It can be inferred from the results that the El Nifio years,
compared to other phases of ENSO, had a higher influence on the decreasing trends in
temperature during the monsoon season. The prolonged effect of El Nifio on temperature
variations of the Indian Ocean and the resulting heat fluxes among various land masses can be
attributed as one of the major reasons for the observed variations (Wang et al., 2005; Xie et al.,

2009).

The spatial pattern of shifts suggested that the El Nifio (La Nifia) and non-La Nifia (non-
El Nifio) years had a similar influence on the study area. All the states — or a large portion of
them except for Jammu and Kashmir, and Uttarkhand — had significant negative shifts during the
El Nifo and non-La Nifia years (Figure 4.4). Districts in Uttarkhand and Uttar Pradesh, which

did not show the presence of shifts during the El Nifio or non-La Nifia years, were found to be
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significant during the La Nifna and non-El Nifio years. This feature of the shift patterns suggested
that the two opposing phases of ENSO influenced certain regions of North India in distinct ways
(Figure 4.4). The El Nifo (La Nifia) years showed similar spatial patterns as the non-La Nifia
(non-El Nifo) years. The maximum (minimum) number of districts with significant negative

shifts was observed during the non-La Nifia (La Nifia) years (Table 4.1).

4.4.1.1. All-Year Change Patterns

The all-year trend patterns suggested that the entire states of Haryana and Punjab, as well
as the western regions of all the remaining states, experienced decreasing trends either during the
entire four-month summer monsoon or in any of the monsoonal months (Figure 4.5). The eastern
regions of Himachal Pradesh, Jammu and Kashmir, Uttarkhand, and Uttaranchal did not show a
significant presence of trends. The monthly variation of trends showed that from June to
September, the spatial location of districts with significant trends shifted from the southwest
towards the north, then shifted back towards the southwest (Figure 4.5). This change in spatial
distribution could be explained by the direction of the monsoon circulation, which carries humid
summer winds from the southwest direction in June and sweeps across the Indian subcontinent
by moving north; eventually, these winds move back to the southwest of India in September.
Table 4.2 lists the number of districts with significant trends during the monsoon and in each of
the monsoonal months. The range of TSA slopes during the monsoon and the monsoonal months
also showed the overall inclination towards decreasing trends (Table 4.3). The TSA slopes
suggest that the month of June experienced the highest variation in temperature over the study
period. Decreasing trends in temperature in many parts of North India also were observed in the
mean temperature trends from 1951 to 2010 by Rathore et al. (2013), which support the findings

of the current study.
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The all-year shift patterns suggested that except for a few districts in the eastern part of
Jammu and Kashmir and Uttar Pradesh, the remainder of North India experienced negative shifts
either during the monsoon or in any of the monsoonal months (Figure 4.6). Similar to the trends,
the shift patterns showed a northbound movement followed by a southbound movement in
districts having significant shifts during the individual monsoonal months. Table 4.2 summarizes
the results in terms of the number of districts with significant shifts. Table 4.4 shows the earliest
and latest shift along with the major intervals having a higher number of shift points in
temperature during the study period. A comparison of the shift points (Table 4.4) with the ENSO
indices (Figure 4.2) showed that most of the shift points coincided with the El Nifio and non-La
Nifia years. Previous studies and historical events (Kumar et al., 1999; Kumar et al., 2006),
causing climate extremes, were found to be consistent with the major shift points detected in the
current study. For both the trend and shift patterns, states with field significance were observed

to vary across the months (Figures 4.5 and 4.6).
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4.4.2. Precipitation Change Patterns

4.4.2.1. Changes Associated with ENSO

A distinct separation across North India was observed between the districts with
increasing and decreasing trends in the spatial patterns of trends. During the various ENSO
phases, the western regions, i.e., Delhi, Haryana, and Punjab, a significant portion of Jammu and
Kashmir, and a few districts in Himachal Pradesh and Uttar Pradesh, experienced increasing
trends (Figure 4.3). Decreasing trends were localized in the eastern regions, i.e., significant
portions of Himachal Pradesh, the entire state of Uttarkhand, and the eastern part of Uttar
Pradesh. The maximum numbers of districts with increasing (decreasing) trends were observed
during the El Nifio (non-El Nifio) years (Table 4.1). In some instances, the direction of the trends
reversed when the ENSO phase changed from El Nifio to non-El Nifio. As suggested by previous
studies, these variations could be explained by factors that either could strengthen or weaken the
effects of ENSO on the monsoon (Saji et al., 1999; Ashok et al., 2004; Charles, 1997). Other
studies suggest that the teleconnection has different correlations based on the time scales (i.e.,
interannual, quasi-decadal, or decadal), which might affect long-term trend patterns (Torrence

and Webster, 1999; Reason et al., 2000; Gadgil et al., 2004).

Similar to the trend patterns, shift patterns of precipitation also showed a spatial
separation between the districts with positive and negative shifts (Figure 4.4). Spatial patterns in
the various ENSO phases showed that both the El Nifio and neutral years played a significant
role in the precipitation shift patterns across North India. In the various ENSO phases, the
western regions, i.e., Delhi, Haryana, and Punjab, as well as a few western districts of Jammu
and Kashmir and Uttar Pradesh, showed positive shifts (Figure 4.4). Negative shifts were
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observed only in the eastern part of Uttar Pradesh and in a few districts of Uttarkhand. This
showed that North India experienced both positive and negative shifts during the various ENSO
phases even though the shifts were spatially separated and localized to certain regions. In the
precipitation trends, there were instances in which the direction of the trend reversed with the
change of the ENSO phase from El Nifio to La Nifia; however, precipitation shift patterns did not
show such a reversal in direction. The La Nifia (non-La Nifia) years had the minimum

(maximum) number of districts with significant shifts (Table 4.1).

4.4.2.2. All-Year Change Patterns

In the all-year trend patterns, the western regions, i.e., Delhi, Haryana, and Punjab as well
as a few western districts of Jammu and Kashmir, and Uttar Pradesh, experienced increasing
trends either during the monsoon or in any of the monsoonal months (Figure 4.5). Decreasing
trends were observed in the eastern districts of Uttarkhand and Uttar Pradesh and in a few of the
western districts of Uttar Pradesh. (Figure 4.5). A greater tendency towards decreasing trends in
the eastern regions was observed by Rathore et al. (2013). Monthly trends followed similar
spatial patterns, although the number of districts with trends varied significantly across the
monsoonal months (Table 4.2). July and August showed a higher number of districts with
significant trends compared to June. This monthly variation could be explained by the timing of
the monsoon circulation. Since the monsoon season starts in June and ends in September, it can
be inferred that the effects of the monsoon developed fully during July and August. Since the
monsoon recedes in September, it might be possible that the change in wind direction does not
result in causing significant change. This also was observed in the TSA slope values for

September (Figure 4.5), as the slopes during September did not follow any spatial pattern; rather,
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they were quite arbitrary in nature (Table 4.3). Comparison of TSA values suggested that July

and August experienced a higher change over the study period.

Similar to the all-year trend patterns, the all-year shift patterns also showed a separation
in the locations of districts with significant positive and negative shifts (Figure 4.6).
Southwestern districts of Uttar Pradesh showed positive shifts but did not show increasing trends
in the trend pattern. Similar to the trend pattern, September did not show significant shifts except
for a single district with a negative shift in Uttar Pradesh. The northbound movement followed
by a southbound movement of the districts with significant trends (shifts) occurring from June to
August could also be explained by the direction of the monsoon circulation as discussed earlier.
The monthly variation (Table 4.2) showed a similar generic spatial pattern of positive and
negative shifts — for the western and the eastern regions, respectively — but varied significantly in
terms of the number of districts with significant shifts (Figure 4.6). Table 4.4 shows the locations
of the major shift points in precipitation during the study period. The shift points observed
mostly coincided with the non-La Nifia years, as was observed by comparing the results with
Figure 4.2. States with field significance were observed to vary across the various monsoonal

months in both the trend and shift patterns.
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4.4.3. Potential Evapotranspiration Change Patterns

4.4.3.1. Changes Associated with ENSO

All the states of North India, or a significant portion of them, were observed to
experience decreasing trends during the El Nifio years in the PET trend patterns (Figure 4.3). The
states showed hardly any significant trends during the La Nifa and non-El Nifio years, except for
a portion of Jammu and Kashmir and a district each in Himachal Pradesh, Punjab, and Uttar
Pradesh. This suggested that the effect of ENSO phases on PET was not evenly distributed
across the districts. With fewer districts of significance in Uttar Pradesh, the non-La Nifia years
had a similar spatial pattern as the El Nifio years. The La Nifia years and non-El Nifio years also
showed similar spatial patterns. The maximum (minimum) number of districts with decreasing
trends was observed during the El Nifio (La Nifia and non-El Nifio) years (Table 4.1). Similar to
the temperature trends, the effect of neutral years, compared to the El Nifio and La Nifa years,
on the change patterns of PET was observed to be less significant (Figure 4.3). Previous studies
have suggested that El Nifio has a much higher potential of altering the evaporation configuration
around Indian Ocean basins, which eventually could affect the temperature of those basins (Klein
et al., 1999), as was found in the current study, especially during the El Nifio and non-La Nifia

years.

The spatial distribution of PET shift patterns revealed that all the districts, except for a
few districts in Uttar Pradesh, experienced negative shifts either during the El Nifio or the La
Nifia years (Figure 4.4). The comparisons revealed that the neutral phases did not play a
significant role in the shifts, as the El Nifio (La Nifia) years had exactly the same spatial patterns
as the non-La Nifia (Non-El Nifio) years. This suggested that the districts experiencing shifts
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during the El Nifio and La Nifa years were mutually exclusive (Figure 4.4). The El Nifio (non-La
Nina) years had a higher number of districts with negative shifts compared to the La Nifia (non-
El Nifio) years (Table 4.1). In the PET trend patterns, the same districts showed the presence of
trends during both the El Nifio and La Nifia years. This was not observed in the shift patterns of
PET, which suggests that the El Nifio and La Nifia years were associated with or influenced the

PET shifts of the northern and southern regions of North India mutually exclusively.

4.4.3.2. All-Year Change Patterns

The all-year trend patterns revealed that most of the decreasing trends were observed in
the northwestern regions, i.e., Himachal Pradesh, Punjab, and Jammu and Kashmir, as well as in
the southeastern districts of Uttar Pradesh either during the monsoon or in any of monsoonal
months (Figure 4.5). The central part of Uttar Pradesh and the entire state of Uttarkhand did not
show much presence of trends in any of the monsoonal months. The monthly variation (Table
4.2) of trend patterns showed that June and July had districts with decreasing trends, mostly in
the northern regions; meanwhile, August and September had decreasing trends both in the
northern and southern regions (Figure 4.5). Compared to the temperature and precipitation trend
patterns, the change in PET across the months did not follow a northbound and a subsequent
southbound movement. However, northern regions showed a higher number of districts with
trends in the first half of the season, while southern regions had a higher number of districts with
trends in the second half of the season. The TSA values (Table 4.3) suggested that June
experienced the greatest change in PET over the study period (Figure 4.3). Moreover, the results
suggested that the decreasing trend in temperature did not necessarily cause a decreasing trend in

PET — at least not during all the months of the monsoon (Figure 4.5). The decreasing trends in
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PET and its anomaly with temperature trends could be explained by the stressed crops and

reduced vegetation across India (Singh et al., 2003; Kohli et al., 2006).

In the all-year shift patterns, all the districts of North India were observed to experience
negative shifts either during monsoon or in any of the monsoonal months. Some mid-
southeastern and southeastern districts of Uttar Pradesh did not show the presence of a trend
during June, July, and August (Figure 4.6). However, during September, all of North India
experienced negative shifts. Except for one district in June, which could be considered as an
anomaly, no presence of positive shifts was observed across the study period during the monsoon
season or in any of the monsoonal months. The locations of the major shift points in PET during
the study period are shown in Table 4.4. Comparing the results with Figure 4.2 showed that the
shift points coincided with both the El Nifio and La Nifa years, but not so much with the neutral
years. Districts all across North India experienced shifts, while mostly northern and southern
regions showed the presence of trends — which was a significant difference between the PET
trend (Figure 4.3) and PET shift patterns (Figure 4.5). For both the all-year trend and shift

patterns, states with field significance were observed to vary across the monsoonal months.

4.4.4. Entropy

4.4.4.1. Temperature Entropy

The AE. suggested that the temperature change was distributed quite evenly over the
study period (102 years) across most of North India (Table 4.5), except for a few northeastern
regions that experienced apportionment over approximately 98 years (Figure 4.7). The spatial
distribution suggested that the southeastern and northwestern regions had higher AE. values
compared to the rest of the study area. The AEs of temperature suggested that the temperature
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change also was quite uniform across the monsoonal months, with the lowest AEs value referring
to a change apportioned over 3.86 months (Table 4.5). The spatial pattern of AEs was found to be
more dispersed across the different districts compared to the AE, pattern. This variation was
more prominent in the comparison between the standardized AE. and AEs values (Figure 4.7).
For most districts, annual variation was observed to be close to the mean value, which was not
the case for seasonal variation. The results showed that a variation in AEs was much higher than
in AE., even among nearby districts. This suggests that the different months of monsoon affected
change patterns differently for each district; however, on an annual scale, the change was much
more uniform across years. A comparison between the trends in temperature (Figure 4.3) and the
entropy distribution of temperature (Figure 4.7) suggested that many districts with significant
decreasing trends had higher entropy values, indicating an even distribution of change over the

study period.

4.4.4.2. Precipitation Entropy

The values of the precipitation AE, were found to be apportioned over approximately 97
to 100 years (Table 4.5) across the districts, which suggested that the variation in precipitation
was less evenly distributed over the study period compared to the variation in temperature
(Figure 4.7). On the other hand, the AEs of precipitation was found to be apportioned over 3.00
to 3.67 months, indicating higher monthly variation across the monsoonal season (Table 4.5).
The spatial distribution of both the AE. and AEs were found to be similar for the mid-eastern and
southeastern regions having higher entropy values, and the mid-western and northwestern
regions having lower entropy values. This similarity of apportionment was evident when
comparing the standardized AE, and AE;s values (Figure 4.7), which suggested that the nearby

districts had similar temporal variations. A comparison between the precipitation trend patterns
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(Figure 4.5) and precipitation entropy distribution (Figure 4.7) suggested that districts with
increasing (decreasing) trends had lower (higher) entropy. This could be an important feature
when trying to understand trend patterns. The results imply that even though some districts
showed increasing trends, their temporal distribution was less evenly distributed over the years,
as well as across the monsoonal months when compared to the districts with decreasing trends.
This suggested that the overall trend pattern of precipitation has decreased with much greater
uniformity, compared to the increase, during the study period. This could be an important insight
regarding the increasing trends observed during the El Nifio years. Although the difference in
apportionment was found to be only three years (97 and 100 years for districts with the lowest
and highest entropy, respectively), the results certainly showed how apportionment entropy

could explain trend patterns with greater insight.
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Table 4. 5: The range of annual and seasonal apportionment entropy of temperature, precipitation, and potential

evapotranspiration across the study period of 102 years and along four months of monsoon.

Annual Apportionment Entropy
(AE.)

Seasonal Apportionment Entropy

(AEy)

Range
(from 0 to 6.6725)

Apportionment

(years)
(from 1 to 102)

Range
(from 0 to 2)

Apportionment
(months)
(from 1 to 4)

Temperature

(95% confidence interval)

6.6187 to 6.6723

98.27 t0 101.99
(101.89 to 101.99)

1.9481 to 1.9985

3.86 t0 3.99
(3.98 to 3.99)

Precipitation
(95% confidence interval)

6.6007 to 6.6506

97.05 to 100.47
(98.82 t0 99.09)

1.5982 to 1.8742

3.02 to 3.67
(3.29 to 3.34)

Pot. Evap.

(95% confidence interval)

6.6701 to 6.6724

101.84 to 101.99
(101.98 to 101.99)

1.9787 to 1.9973

3.94 10 3.99
(3.963 to 3.965)

4.4.4.3. Potential Evapotranspiration Entropy

On an annual scale, the AE. of PET showed that the variations observed were quite
evenly distributed (apportionment of approximately 102 years) over the study period (Table 4.5).
The AEs of PET showed higher values of apportionment over almost all the months of monsoon,;
however, the spatial distribution was found to be quite different than what was observed in the
AE. (Figure 4.7). Even though the actual range within which the values varied (1.9787 to
1.9973) was quite narrow (Table 4.5), the variation was quite high among the adjacent districts.
The results showed that the spatial pattern of districts with higher and lower apportionment
indices was quite opposite in the AE, and AEs. Higher AE, values were observed in the mid-
western and southern regions, while the northeastern regions showed lower AE, values. This
pattern was reversed in the AE;s distribution (Figure 4.7). The reversed behavior was more
evident when comparing the standardized AE, and AE; values (Figure 4.7). Although both the
annual and the seasonal variations suggested an even distribution temporally, the reversal in their
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spatial distribution suggested that the variation in PET during monsoonal months was opposite
from the long-term annual variation. A comparison of PET trend patterns (Figure 4.5) and PET
entropy distribution (Figure 4.7) revealed that many of the districts with significant decreasing

trends showed higher AE, values, indicating that the change was fairly even.

The analyses of entropy for each of the variables showed how the change patterns were
distributed temporally across the years and the monsoon season. In the cases when a variable
experienced both the increasing and decreasing trends, the entropy revealed if one of the trends
was more prevalent over the years (or across the season) or both had similar temporal
distribution. Thus, the conjunction of the entropy analysis with the trend test (coupled with slope

detection) provides greater insight into the nature of a trend.

4.5. Conclusions

In this study, three hydro-climatological variables, i.e., temperature, precipitation, and
PET, were analyzed over century-wide data (from 1901 to 2002) to evaluate the influence of
various ENSO phases on the change patterns across North India during the monsoon season.
Trend and shift patterns in 146 districts in eight North Indian states were analyzed, and the
annual and the seasonal (monsoonal) apportionment entropy that quantified the temporal
distributions of the change patterns were evaluated. Besides the effects of ENSO, the all-year
(century-wide) monsoonal change patterns were analyzed to determine the effect of each of the
monsoonal months on the long-term patterns. Results suggested that the El Nifio years, compared
to the La Nifna and neutral years, had a much greater influence on the change patterns of the
variables. The all-year change patterns suggested a significant decrease in the temperature and

PET trends and shifts across North India, while the precipitation change patterns (both increasing
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and decreasing) were found to be region-specific. The entropy analyses suggested that the
highest variation in the long-term change pattern occurred in precipitation data, whereas
temperature and PET experienced more variation during the monsoon season compared to

changes over the years.

Major physical and dynamic relationships affecting the monsoon season due to the
change in ENSO phases in the Indian subcontinent were compiled and discussed in this study
based on the previous literature. By analyzing multiple hydro-climatological variables of North
India, the study illustrated how various variables can be affected by the different phases of
ENSO. Climate researchers and policymakers may find the results useful to understand the
variability resulting from the various ENSO phases during the north Indian monsoon season.
Such understanding may help devise strategies to mitigate the adverse effects of climate

extremes.
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CHAPTER 5: COMPARISON OF TRENDS AND SHIFTS IN THE OBSERVED AND
MODELED (CMIPS) TEMPERATURE AND PRECIPITATION PATTERNS OF THE

COLORADO RIVER BASIN UNDER SHIFT AND PERSISTENCE

5.1. Introduction

Understanding of trends in various hydro-climatological data, under the influence of
climate change, to yield practical solutions to the existing and imminent threats, is a major topic
of research in the scientific community, especially among the climate data modelers (Asrar et al.,
2012; Arnell, 2011; Shakya et al., 2019). The recent assessment reports (AR5 and AR6) of the
Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2014 and 2019) has provided a
synthesis of results for policymakers based on simulation results provided by phase five of the
Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2012). Many studies, both on
the continental and regional scales, have focused on historical as well as projected temperature
and precipitation trends in the multi-model CMIPS5 data to examine extreme climate conditions
(Wuebbles et al., 2014; Lynch et al., 2016; Nyaupane et al., 2018; Chen et al., 2019). A study by
Kumar et al. (2013) evaluated the effects of persistence, i.e., clustering behavior in the hydro-
climatological observations, in the long-term trends on a global scale and compared the results
against multiple observed datasets. The study suggested that the CMIP5 models are capable of
capturing the effects of persistence in temperature better than precipitation. Presence of
persistence, e.g., positive serial correlation, has been considered as one of the major reasons of
uncertainty in hydro-climatological data since it reduces the effective sample size, which leads to
an overestimation of variance, and overestimates the probability of a significant trend (Hamed
and Rao, 1998; Yue et al., 2002; Koutsoyiannis, 2003). Another important feature of

nonstationary hydro-climatological data is the presence of shifts (abrupt changes) in the data
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distributions (Villarini et al., 2009). A non-stationary time series experiences changes in the
distribution function over time, which may lead to a significant change in variance. Villarini et
al. (2009) suggest that a trend is “l/ikely to continue in the future”, whereas a change point (shift
point) implies “shift from one regime to another, and the status is likely to remain the same until
a new regime shift occurs”. Ignoring the effect of shift points (SPs) in trend analyses may lead
to ambiguous results. Figure 5.1 (left) shows an example of how ignoring an SP in the data
distribution may lead to erroneous detection of trends (a similar example was shown by Villarini
et al. (2009) to illustrate that performing a trend test before considering the SP may result in a
detection of erroneous significant trend). However, if the presence of an SP was considered, the
two subseries — before and after the SP — independently do not suggest statistically significant
trends (note the horizontal slopes in Figure 5.1). More details on the importance of detecting SPs
in association with trends can be found in the works of Villarini et al. (2009) and Mallakpour and
Villarini (2016). Studies like Kalra et al. (2008), Miller et al. (2008), and Sagarika et al. (2014)
have also used trend and shift detection tests — however, these studies considered trends and
shifts to be independent of each other, at least when applying the tests. A recent study by
Serinaldi and Kilsby (2015) suggests that the shift detection tests are also affected by the
presence of trends and persistence, especially by the short term persistence (STP). Hence, de-
trending the data (if required) and removal of persistence, before the trend and/or shift detection

tests, becomes imperative to produce results with higher reliability.

In this study, simulated temperature and precipitation time series of CMIPS5 (referred to
as CMIPS5 temperature and precipitation models in the later sections of the manuscript) for the
Upper and Lower Colorado River Basins (UCRB and LCRB, respectively) were analyzed to

determine the presence of significant trends and shifts with respect to persistence. A total of 41
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temperature and 25 precipitation CMIP5 models were analyzed over a study period of 104 years,
i.e., from 1901 to 2004. For each model, a significant SP was detected (if present) using the
Pettitt’s test (Pettitt, 1979), followed by the analyses of trends before and after the significant SP
using the Mann-Kendall (MK) test (Mann, 1945; Kendall, 1975). Both the Pettitt’s and the MK
tests are of nonparametric in nature, which makes them appropriate for climate data distributions
that are often subject to non-stationarity and non-normality (Kumar et al., 2009). Villarini et al.
(2009) compared among multiple parametric and non-parametric tests to detect both shifts and
trends and concluded that the Pettitt’s and the MK test were the most reliable ones in detecting
shifts and trends, respectively. For the shift detection test, trend-free-pre-whitening (TFPW),
based on Yue et al. (2002), was applied as suggested by Serinaldi and Kilsby (2015), to remove
the effect of STP from the models. Several modified MK tests were applied, based on Kumar et
al. (2009), to determine the effects of both the long-term persistence (LTP) and STP on the
identified trends. To evaluate the ability of CMIP5 models to capture the observed trends, under
the influence of SPs and persistence, data from the Climate Research Unit Time Series version
3.10 (CRU-TS) were analyzed. Both the CMIP5 and CRU-TS datasets were analyzed at identical

spatial and temporal resolutions.

Based on literature review of the recent studies (Villarini et al., 2009; Venema et al.,
2012; Williams et al., 2012), this study hypothesized that trend analyses are better explained if
SP detection tests are included prior to the trend tests as was explained earlier with the example
in Figure 5.1. Hence, the first objective of the study was to detect SPs in both the modeled and
observed datasets and to evaluate the presence of trends independently before and after the SPs.
Studies also suggest the importance of the removal of persistence preceding both the trend and

shift detection tests. Therefore, as the second objective, the study evaluated the effects of

109

www.manaraa.com



persistence on the detected trends and shifts. As the final objective, the efficacy of CMIP5
models to match the observed trends, considering both the significant SPs and persistence, was

evaluated across the Colorado River Basin (CRB).

5.2. Study Area and Data

Data from 41 temperature and 25 precipitation CMIP5 models (https://cmip.lInl.gov/)
were obtained (in terms of anomalies calculated with respect to 1961-1990 mean to be consistent
with the observed data) from 1901 to 2004 for the UCRB and LCRB. The basin boundaries were
obtained from the USGS hydrologic unit map (https://water.usgs.gov/GIS/huc.html). For each
model, only the first ensemble member was considered in the analyses. The obtained data were
re-gridded (as suggested by Kumar et al. (2013) using an area-average preserving method) to a
common spatial resolution of 2.5° x 2.5°, which resulted in a total of 22 grid cells (boxes or
squares) for the entire CRB (Figure 5.1). Grid cells 1 to 10, 14, and 15 had the majority of their
portions in LCRB, while grid cells 11 to 13, and 16 to 22 had the majority of their portions in
UCRB (Figure 5.1). The observed CRU-TS temperature and precipitation time series data (in
terms of anomalies with respect to 1961-1990 mean) (https://crudata.uea.ac.uk/cru/data/hrg/)
were up-scaled from 0.5° x 0.5° to 2.5° x 2.5° using an area-average preserving method as well,
as suggested by Kumar et al. (2013) and Mitchell and Jones (2005), to match the modeled data
resolution. For both the datasets, mean annual time series data were produced by aggregating the
monthly temperature and precipitation data. Appendix 5 (Table AS.1) lists the names of all the
CMIPS5 models analyzed in the study. Figure A5.1 (Appendix 5) shows the temperature and
precipitation anomaly data obtained from the CMIP5 model simulations (as multi-model

averages) and CRU-TS observations across the study period for each of the grid cells.
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5.3. Methodology

For the trend analyses, four different versions of the MK test (Mann, 1945; Kendall,
1955), adopted from Kumar et al. (2009), were applied. Similar modified versions of the MK test
were found in the literature relating to determination and quantification of trends (Tamaddun et
al., 2016). The first version, referred to as the MK in the following sections, is the original form
of the MK test (Lettenmaier et al., 1994). The second version, referred to as the MK2, is a
modified MK test with TFPW, as explained by Yue et al. (2002), and considers the effect of STP
or lag-1 autocorrelation in the data distribution. The third version, referred to as the MK3, is a
modified MK test that takes into account all the significant autocorrelation structures present in a
time series (Hamed and Rao, 1998). The fourth version, referred to as the MK4, is a modified
MK test that considers the effect of LTP, also known as the Hurst phenomenon (Hamed, 2008) in
the hydrology literature (Koutsoyiannis, 2003). The MK test, at its core, is based on the null
hypothesis that the time series has no trend. The test determines the direction of a trend, which
can be either positive, negative, or absence of a trend, based on the first MK test statistic
(obtained from a signum function). Later, another test statistic is determined (from the first test
statistic), which gives the significance level of rejecting the null hypothesis. The modified
versions of the MK test, as mentioned earlier, checks for the presence of autocorrelation (Kumar
et al., 2009), and based on the type of autocorrelation, either modifies the time series (MK2
applies prewhitening) before determining the significance of the MK test, or adjusts the formula
to determine the test statistic (MK3 and MK4). Hence, a time series under MK 1 may suggest a
trend at a certain significance level, however, the same time series may not be statistically
significant under MK2, MK3, or MK4, or vice versa. Besides the MK test, Theil-Sen approach

(TSA) (Theil, 1950; Sen, 1968) was adopted to quantify the magnitude of the trends. TSA is
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nonparametric in nature, hence it is considered appropriate to be applied in conjunction with the
MK test. TSA determines the median slope of all the possible pairs in a time series. Thus, the test

is robust against possible outliers.

Pettitt’s test (Pettitt, 1979), with and without TFPW (Yue et al., 2002), was used to
determine the presence of significant SPs in the data distributions, as was suggested by Serinaldi
and Kilsby (2015). The Pettitt's test (Pettitt, 1979), at its core, detects the shift (using a signum
function similar to the MK test) in a time series by testing the anomaly between the mean of two
independent samples from the same time series. The detected shift, which can be either positive,
negative, or an absence of a shift, is then tested for a probability estimate based on the
significance level used. The TFPW process removes the trend (de-trending) from a time series by
subtracting the slope of the trend (Yue et al., 2002) and then removes the serial correlation from
the de-trended time series. Hence, with TFPW, the Pettitt’s test becomes more reliable in cases
of time series with underlying trends. Depending on the presence of a significant SP, each of the
time series was divided at the SP, and all the MK tests were applied before and after the SP
separately. This approach of detection of an SP and then applying the MK tests prior to and after
the SP has been labeled as “Shift-Trend” in the following sections. A confidence level of 90%

(significance level of 10% or p < 0.10) was used for the significance of all the tests.

5.4. Results

5.4.1. Shift-Trends in Temperature Data

The majority of the CMIPS5 temperature models at each of the grid cells suggested a
positive shift (Appendix 5, column four (+/-) of Table A5.2) between 1940 and 1980 (according
to the SPs one standard deviation above and below the mean SP) (Figure 5.2a). The overall range
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of the SPs was found to be slightly wider (around 1920 to 1980). The mean SPs of all the CMIP5
models had a significantly narrow range, i.e., between 1960 and 1970, except for the grid cell 11,
which experienced an earlier shift. The mode of SPs across the CMIP5 models (Table A5.2)
suggest that almost all the grid cells had shift points between 1960 and 1980. A few models at
each grid cells showed negative shifts, but the numbers were very few compared to the positive
shifts (Table AS5.2). The effect of STP on the SPs was found to vary across the grid cells — for
some grid cells, the mean SP was shifted by more than a decade (e.g., grid cell 3, and 13-15)

(Figure 5.2a).

Comparison between the trends before and after the shifts showed that the total number
of models at each grid cells with the positive trends increased by approximately a factor of three
after the shifts (last row of Table A5.2). On the contrary, negative trends were hardly observed
after positive shifts, even though there were models with negative trends before the shifts. Both
MK3 and MK4 had a smaller number of models with trends, whereas MK2 had a higher number
of models with trends compared to MK 1 (both before and after the SPs) (Table A5.2). The
LCRB had a higher number of models with positive trends compared to the UCRB, both before
and after the SPs. Contrarily, UCRB had a higher number of models with negative trends
compared to the LCRB before the shifts. There was only one model with a negative trend after
the SP in the UCRB (under MK 1 and MK2), while the negative trends in the LCRB were all
neutralized after the SPs (Table A5.2). The effect of positive shifts in the detected trends was
also evident from the TSA trend slopes evaluated before and after the shifts. Figures 3a and 3b
show that the mean trend slope across the grid cells increased by a factor of 10 after the shift.
The median TSA slopes, both before and after SPs, were all found to be positive across the

models at each grid cell.
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The CRU-TS temperature data showed a higher variation among the SPs across the grid
cells as compared to the mean SPs of the modeled data. Almost all the grid cells had a positive
SP between 1930 and 1980 (Figure 5.2b). The effect of STP was found to be higher in the CRU-
TS data since the majority of the grid cells did not show significant SPs after applying TFPW.
Grid cells without a significant SP were infilled by the average of the significant SPs found
across the basin (named as the basin-mean-SP) in Figure 5.2b. The effect of shifts in the detected
trends was found to be less in the CRU-TS temperature data — especially in MK3 and MK4 — as
the total number of grid cells with significant trends were comparable before and after the
significant shifts (Appendix 5, Table A5.3). In MK1 and MK2, the number of grid cells with
positive trends was close to double after the positive shifts. Except for the two grid cells in the
LCRB, the direction of the trends in all the other grid cells was positive, both before and after the
positive shifts (Table A5.3). The UCRB had a higher number of grid cells with positive trends
compared to the LCRB, which was opposite of what was found among the CMIP5 models. The
mean TSA trend slopes across the grid cells showed a significant rise, an increase by a factor of
4, after the positive shifts (Figures 5.3c and 5.3d). The rate of increase in the slope values, from
before the shifts to after the shifts, was found to be higher in the central grid cells compared to

the eastern and western grid cells.

A basin-wide analysis revealed a noticeable increase in the basin-mean trend slope
(obtained by averaging the slopes of all the grid cells within the CRB) after a significant shift —
both in the modeled and observed datasets (Figure 5.3e). Though the modeled mean shift (1962)
(obtained from averaging all the SPs within the CRB) occurred a decade later than the observed
mean shift (1952), the increase in slope after the shift was found to be quite comparable (within

the same order and consistent direction) with the observed data. The modeled mean slope
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changed from +0.0023 to +0.0232 (increased by a factor of 10), while the observed mean slope

changed from +0.0038 to +0.0157 (increased by a factor of 4) (Figure 5.3).

5.4.2. Shift-Trends in Precipitation Data

In the CMIPS5 precipitation models, it was difficult to conclude on the general direction of
the shifts since the number of models with positive and negative shifts at many of the grid cells
was comparable (equal in some instances) (Appendix 5, column four (+/-) of Table A5.4).
Besides, only a small proportion of the precipitation models showed a significant shift compared
to the temperature models (last row of Table A5.4). However, for the entire CRB, a higher
tendency towards negative shifts was observed from the analyses. The SPs at each grid cells
across the majority of the models were found between 1920 and 1980 (according to the SPs one
standard deviation above and below the mean SP as well as in the overall range) (Figure 5.2¢).
The mean SPs among the models at each grid cells were found within a narrower range (i.e.,
between 1930 and 1960). There was no significant mode among the SPs across the models
(Table A5.4). The effect of STP was found to be higher among the CMIP5 precipitation models,
as TFPW shifted the mean SPs by more than a decade for some of the grid cells, e.g., cells 3-5,

cell 11, and cells 14-16 (Figure 5.2c).

A neutralizing tendency, in terms of the direction of the trends, was observed between the
trends before and after the shifts. The number of models with positive trends after the shifts was
reduced to close to one half compared to before the shifts (last row of Table A5.4). Models with
negative trends were hardly present after the shifts, except for one model under the MK3 in the
UCRB. MK1, MK2, and MK4 had comparable results — both before and after the shifts (Table

AS5.4). MK3 had the highest number of models both with positive and negative trends. The
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LCRB had a higher number of models with positive trends both before and after the shifts than
the UCRB (Table A5.4). The LCRB also had a higher number of models with negative trends
before the shifts, but all the trends were neutralized after the shifts. From the TSA trend slopes, it
was difficult to determine the general direction of the precipitation trends across the grid cells
(Figures 4a and 4b). Before the shifts, the mean TSA slope was found to be slightly above zero,
with the eastern and western grid cells having relatively positive slopes and the central grid cells
having relatively negative slopes. After the shifts, the mean TSA slope was found to increase, but
that increase can be attributed to the absence of significant SPs in many of the modeled data
distributions — which overestimated the overall mean trend across the CRB. The TSA slopes

after the shifts showed a higher rate of increase among the central grid cells compared to the

eastern and western grid cells.

The effect of STP was not conclusive as for the majority of the grid cells (Appendix 5,
Table A5.5) — both with and without TFPW — did not show significant SPs in the CRU-TS
precipitation data (Figure 5.2d). The results of the different versions of the MK tests were quite
similar and showed only negative trends both before and after the shifts. In fact, MK 1, MK2, and
MK4 had exactly the same results (Table A5.5). The majority of the shifts were found to be
positive, which neutralized the pre-existing negative trends and resulted in the absence of trends
after the shifts. The LCRB had a higher number of grid cells with negative trends compared to
the UCRB — both before and after the shifts (there was only one grid cell with negative shift in
the LCRB after the shift) (Table AS5.5). The mean TSA slope across the grid cells before the
shifts was close to zero (slightly negative) (Figure 5.4c). Many of the grid cells did not have a
significant shift, which produced inconsistency in the estimation of trend slopes. As the grid cells

without significant shifts had no trend after the shift (such grid cells had a trend for the entire
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study period represented as a trend before the shift in Figure 5.4c), those cells did not contribute
in calculating the mean slope after the shift — and hence, those cells fell on the no trend line in
Figure 5.4d (shown by unfilled symbols). Therefore, the mean slope was found to decrease after
the shift since the negative slopes were found to be of higher magnitude compared to the positive
slopes among the grid cells with significant shifts (Figure 5.4d). A higher magnitude of negative
slopes among a handful number of grid cells (all the grid cells did not have a significant shift)
may have created a negative bias in the mean slope after the shift. The eastern grid cells, both
before and after the shifts, showed fewer slopes compared to the western grid cells. Many of the

grid cells that did not show a significant SP had positive trends across the entire study period.

The basin-wide analysis did not produce a satisfactory comparison as the basin-mean
slopes (obtained by averaging the slopes of all the grid cells within the CRB) were found to be
inconsistent between the modeled and observed datasets. The modeled data showed an increase
(from 0.0091 mm/year to 0.0195 mm/year) in the basin-mean slope (obtained from averaging all
the SPs within the CRB) while the observed data suggested a decrease (from -0.0039 mm/year to
-0.0109 mm/year) (Figure 5.4e). Unlike the temperature models, precipitation models
experienced the mean shift (obtained from averaging all the SPs within the CRB) earlier (1951)
than the observed shift (1958) (Figure 5.4¢). The distribution of the observed data revealed that

the grid cells with decreasing trends had a higher influence on the basin-wide mean.
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Figure 5. 3: Box plots showing the distribution of the Theil-Sen approach (TSA) trend slopes across the CMIP5 (a

and b) and CRU-TS (¢ and d) temperature data before and after a significant shift at each of the selected grid cells.

The black (dashed) horizontal lines mark the “No trend” line. The orange lines show the average TSA trend slope

across all the grid cells. (e) Plots showing the basin-mean TSA slope before and after the shift in the CMIPS and

CRU-TS temperature data. The orange line connecting the basin means, before and after the shift, shows the change

in slope due to the shift. The box plots in (e) show the distribution of the SPs across all the grid cells for visual

comparison. The box plots show the 25, 50", and 75" percentile, while the whiskers represent the minimum and

maximum values. Grid cells 1-10, 14, and 15 are located in LCRB, while grid cells 11-13, and located 16-22 are in

UCRB. (e) 95% confidence intervals of the basin mean slope for the CRU-TS data (CMIP5 models) before and after
the shift were -0.0027 to 0.0104 (0.0019 to 0.0027) and 0.0097 to 0.0216 (0.0223 to 0.0241) °C/year, respectively.

120

www.manharaa.com



5.5. Discussion

The ability of CMIPS5 simulation models to match the observed trends under the influence
of shifts and persistence was evaluated in this study. The Pettitt’s test, preceded by TFPW (Yue
et al., 2002) was used to detect the significant SPs, as was suggested by Serinaldi and Kilsby
(2015). Compared to the CMIP5 temperature models, the precipitation models experienced a
higher influence of STP (Figures 2a and 2c) as the mean SP of some of the grid cells moved by
more than a decade after the TFPW. Such movement in SP can be attributed to the absence of
significant SPs in some of the modeled data distributions after applying TFPW — which can
produce a bias in the mean SP. In the observed data distributions, the effect of STP was higher as
the majority of the grid cells did not show any significant SP after TFPW (Figures 2c and 2d).
However, for such grid cells having SPs both before and after TFPW, the locations of the SPs
were found to be comparable. The results suggest that the effect of STP was higher in both the
modeled and observed precipitation data compared to the temperature data. Other prewhitening
techniques, e.g., AR(1)-based prewhitening and fGn-based prewhitening, can be evaluated in
future studies to verify the obtained results. However, the results may not vary significantly as

was suggested by Serinaldi and Kilsby (2015).

The CMIP5 temperature models had a narrower range of mean SPs compared to the
observed data (Figure 5.2). Furthermore, the temperature models showed the tendency of
detecting significant SPs at a later date compared to the observed data. The variation of SPs
among the adjacent grid cells was much higher in the CMIP5 precipitation models compared to
the temperature models. The results of the modeled and observed precipitation datasets were not
highly comparable as many of the grid cells in the observed data did not have a significant SP.

Contrary to the temperature models, the precipitation models detected the SPs earlier than the
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observed SPs. Such a tendency was also evident from the basin-wide shift of temperature and
precipitation (Figures 3e and 4e). This suggests an overall bias (a tendency of detecting shifts

earlier or later than the observed shifts) in the modeled data distributions.
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Figure 5. 4: As in Figure 5.3, but for precipitation data. For visual comparison, grid cells without a significant SP, at
p <0.10, in (d), were infilled with zero slopes (no trend), as shown by unfilled symbols. Grid cells 1-10, 14, and 15
are located in LCRB, while grid cells 11-13, and 16-22 are located in UCRB. (e) 95% confidence intervals of the
basin mean slope for the CRU-TS data (CMIP5 models) before and after the shift were -0.0201 to 0.0124 (0.0026 to
0.0155) and -0.0522 to 0.0305 (-0.0027 to 0.0416) mm/year, respectively.
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The analyses suggest that the SPs across the grid cells (also the basin-mean-SP) were
located within a range of a few decades for both the temperature and precipitation models.
Previous studies have looked into the correspondence between the phases of large-scale climate
variabilities originating from the SST fluctuations (i.e., El Nifio Southern Oscillation, Pacific
Decadal Oscillation, and Atlantic multidecadal oscillation) and the station-based hydro-
climatological data of the CRB (Tamaddun et al., 2017; Kalra et al., 2017; Nowak et al., 2012).
The obtained results were found to be fairly consistent with the shifts observed in the previous
studies (Pathak et al., 2017; Rahaman et al., 2019). The range of results among the models and
their inherent uncertainty due to natural climate variability was discussed by Deser et al. (2012a
and b), which may explain the comparable SPs across the models. The study also mentions the
importance of large-scale fields on the downscaled local climate models. Future studies may
consider the findings of the study in inter-model and inter-variable analyses of the models as a

response to large-scale climate variabilities.

The effect of persistence on trends was found to be consistent between the variables in
the modeled and observed datasets. Both the temperature datasets (modeled and observed) were
more greatly influenced by STP as TFPW (MK2) increased the number of significant models
when compared to MK 1, while the numbers of significant models were fewer in MK3 and MK4
(Tables AS5.2 and AS5.3). The precipitation data distributions were found to be highly influenced
by the significant autocorrelation structures with a higher number of significant models in MK3
compared to the other MK tests (Tables A5.4 and AS5.5). Studies suggest that the effect of
persistence can have different associations among correlated variables even within a particular

region (Kumar et al., 2009). The consistency between the modeled and observed datasets
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observed in the persistence of a variable can be compared to other hydrologic basins to evaluate

its uniformity across a larger study area in future studies.

The effect of shifts on the detected trends was found to be much higher in temperature
compared to the precipitation datasets. The positive shifts in the temperature datasets increased
the trend slopes significantly after the shifts. The slopes — both before and after the shifts — were
found to be fairly consistent between the modeled and observed datasets. However, the rate of
increase, from before the shift to after the shift, was higher in the CMIP5 models. Before the
shifts, the slopes varied from the eastern to the western grid cells, but they were found to be
consistent (all positive) after the shifts, which suggests a basin-wide shift towards a positive
trend in both the modeled and observed datasets. Though CMIP5 temperature models
overestimated the magnitude of the trend, both before and after the shifts, the models

satisfactorily captured the observed trend slopes.

In the precipitation datasets, the absence of significant SPs may have led to a bias in the
estimation of trends since the effective number of grid cells (while calculating the mean slope)
was inconsistent between the modeled and observed distributions as well as between before the
shift cases and after the shift cases (Figure 5.4). Some of the CMIP5 models did not have a
significant SP, which overestimated the variance of the trend slopes and may have produced
biased results. A similar occurrence of bias was found in the observed data as many of the grid
cells did not have a significant SP. Though the trend slopes between the modeled and observed
datasets were incomparable (and hence inconsistent), both the datasets showed a lack of SPs in
their distributions. This suggests that the precipitation and temperature trends in the CRB did not
experience identical changes over the study period. The presence of shifts, in strengthening or

neutralizing an existing trend, was much higher in the temperature trends compared to the
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precipitation trends. The influence of modeled and observed datasets varied across the UCRB
and LCRB without any noticeable consistency within the variables. However, before the shifts,
especially in the temperature data, the eastern and western grid cells showed higher slopes, while
after the shifts, the central grid cells showed higher slopes. The observed variation from east to

west can be a scope of research for future studies.

5.6. Conclusions

This study evaluated the effects of SPs and persistence on the trend analyses of the
CMIPS temperature and precipitation models for the entire CRB across 104 years. The obtained
results were compared against the observed CRU-TS datasets. The results showed that the trends
in temperature models were relatively consistent with the observed trends — both in the direction
and magnitude. For both the precipitation datasets, the absence of significant SPs in many of the
grid cells led to incomparable and inconsistent results. The variation in SPs among the adjacent
grid cells was higher in the modeled precipitation and observed temperature data. Both the
temperature datasets showed a higher influence of STP in their detected trends (MK2), while
both the precipitation datasets were highly influenced by the significant autocorrelation

structures of the time series (MK3).

The major contributions of this study are:

e A shift-trend approach was adopted where the direction and magnitude of the trends were
evaluated independently before and after significant SPs for both the modeled and
observed datasets. This allowed the current study to evaluate the effect of shifts in

strengthening or neutralizing the pre-existing trends.
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e The effect of persistence was thoroughly examined not only for the trend tests but also
for the detection of SPs. The trend analyses revealed that the effects of persistence varied
between the variables, but they were consistent between the modeled and observed
datasets. The SPs were found to be influenced by persistence in both the datasets with
higher influence on the observed datasets.

e The inconsistencies detected between the CMIP5 and observed datasets — under the
influence of SPs and persistence — can be helpful in improving the models. The observed

biases can be helpful to practitioners who highly depend on data-driven modeling.

Future studies may look into the uncertainties related to large-scale climate variability
and the modeled distributions. The inclusion of multiple ensemble members can also be another
scope of research. Comparing the results with adjacent hydrologic basins may provide important

insights regarding other possible biases in the CMIP5 models.
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CHAPTER 6: CONTRIBUTIONS AND RECOMMENDATIONS

6.1. Summary

Climate warming has affected hydrologic processes in various ways — one of them
involves changes in the behavior and intensification of the hydrologic cycle. The adverse
consequences of these changes have increased under the changing climate as the rapid increase
in population stresses limited water resources. Water managers have expressed concerns
regarding the aftermath associated with access to fresh water as a response to the change in
climate. Hence, the primary objective of the work presented in this dissertation was to evaluate
the change patterns, i.e., a gradual change known as the trend, and an abrupt change known as
the shift, of multiple hydro-climatological variables, namely, streamflow, SWE, temperature,
precipitation, and PET, in association with the large-scale oceanic-atmospheric climate signals.
Moreover, both observed datasets and modeled simulations were used to evaluate such change
patterns to assess the efficacy of the modeled datasets in emulating the observed trends and shifts
under the influence of uncertainties and inconsistencies. A secondary objective was to utilize the
detected change patterns in designing data-driven prediction models, e.g., ANN, SVM, and GPR
models, coupled with data pre-processing techniques, e.g., PCA and WT. The study was not
solely limited to the hydrologic regions of the conterminous U.S.; rather it was extended to
include an analysis of northern India to appraise the differences in the spatiotemporal variation

on a broader scale.

The first task examined two research questions: (1) What are the spatiotemporal trend
and shift patterns of the conterminous U.S. streamflow in association with large-scale oceanic-

atmospheric climate signals across multiple frequency bands? (2) How effective are data-driven
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models, e.g., ANN, SVM, and GPR, when coupled with data pre-processing techniques, e.g.,
PCA and WT, in predicting short-term streamflow behavior? The task was based on the research
basis that detection of trends and shifts across multiple frequency bands may provide a better
understanding of the nature of the change patterns, especially when such changes have been
found to be associated with the oscillatory behavior of large-scale oceanic-atmospheric climate
signals such ENSO, PDO, and AMO. Since these signals contain multiple frequency components
and alternating phases when changing over a long time, associating the streamflow change
patterns with these signals across various frequency bands can be of significant importance. The
detected intra-variation and inter-covariation between streamflow and the climate signals across
multiple frequency bands may have the potential to improve the predictive ability of the data-
driven models, e.g., ANN, SVM, and GPR, when coupled and designed properly. Hence, the
study analyzed water year and seasonal trends and shifts (along with their DSs) in 237
unimpaired streamflow stations across the continental U.S. from 1951 to 2012. The
spatiotemporal association between regional streamflow patterns and three large-scale climate
signals were assessed using WTC. The major findings and the summary results of this task were:
positive (negative) trends and shifts in the water year and its DSs were significant in the
northeastern and north-central (northwestern and southeastern) regions; a few central regions
showed both directional trends and shifts. This was not common since most of the regions
showed spatial coherency in terms of the trend and shift direction; seasonal trends and shifts
suggested unique spatial patterns in the original time series as well as in their DSs. Fall and
spring showed the highest positive and negative trends and shifts, respectively, suggesting a
behavioral change at the end of these two seasons. The number of significant stations with trends

and shifts increased as the DSs went higher, with the maximum in DSS8. Shifts showed an

128

www.manaraa.com



oscillating behavior in DS8 — which led to the hypothesis that such behavior at higher SBs was
correlated to the frequency components of the climate signals; ENSO showed a higher
correlation with the regional streamflow in CS8 to CS16, while both PDO and AMO showed
higher correlations in the lower CSs (below CS4) and beyond CS16; the relative phase
relationship suggested a uniform lag-response behavior (either in-phase or a lag of one quarter)
between significant regional streamflow patterns and ENSO. For PDO and AMO, no such
consistency was observed. Comparison among the ANN, SVM, and GPR models, preceded by
PCA and WT, produced comparable results with significant accuracy in predicting short-term

streamflow behavior.

The second task inspected two research questions: (1) How do the large-scale oceanic-
atmospheric climate signals originating from the Pacific Ocean affect the western U.S. SWE
across multiple frequency bands? (2) Which regions of the western U.S. have maintained a
consistent phase relationship, in terms of SWE, with the large-scale climate signals originating
from the Pacific Ocean; and how does the lag-response behavior change across multiple
frequency bands? This task was formulated based on the assumption that association between
regional western U.S. SWE and the large-scale oceanic-atmospheric climate signals originating
from the Pacific Ocean, e.g., ENSO and PDO, can be better explained in their frequency
components since these signals contain multiple frequency components. Such signals also
alternate between phases when changing over a long time. The detected correlation between
SWE and the climate signals across multiple frequency bands may provide a better insight into
their spatiotemporal relationships and may explain their phase relationships with greater detail.
Hence, the study examined the correlation between ENSO/PDO and the western U.S. SWE over

a study period of 56 years using CWT and its derivatives. Application of such methods allowed
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the study to analyze and correlate regional SWE with oceanic-atmospheric climate indices across
multiple timescale bands. The analysis revealed the following: ENSO, compared to PDO, had a
much higher influence on SWE. The temporal associations were observed to be stronger in the
higher timescale (lower frequency) bands. The effect of ENSO/PDO varied significantly across
the adjacent hydrologic regions; regions close to the ocean (inland) and lower (higher) in

elevation were observed to show a higher (lower) correlation with ENSO/PDO.

The third task investigated two research questions: (1) What are the spatiotemporal trends
and shift patterns of temperature, precipitation, and potential evapotranspiration in the north
Indian monsoon (and its comprising months) across the last century during the phases of ENSO?
(2) What is the rate of change (slope) of the trends and how are the trends distributed
(apportioned) along the years and through the months of monsoon? Large-scale oceanic-
atmospheric climate signals, such as ENSO and their phases have been found to influence global
hydro-climatological patterns in various ways based on the geography and the seasonal variation
of a region. Among the different regions of India, the northern part of the country has been
observed to experience many different climate extremes, e.g., storms, droughts, and floods, over
the years. Since monsoon is the single most important season for the region, evaluation of the
temperature, precipitation, and PET patterns (both trends and shifts) across the last century,
especially during the various phases of ENSO, can be of great value to regional water
management. A proper quantification, e.g., the rate of change and apportionment, of the trends
can also be helpful in evaluating temporal variation across the years and through the months of
monsoon, which lasts from June to September. Moreover, as the literature suggests, the multi-
variable analyses approach adopted in this task may help investigators to understand the response

of regional hydrology to large-scale climate signals such as ENSO. Hence, in this task, three
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hydro-climatological variables, i.e., temperature, precipitation, and PET, were analyzed over a
century-wide period (from 1901 to 2002) to evaluate the influence of various ENSO phases on
the change patterns across North India during the monsoon season. Trend and shift patterns in
146 districts in eight North Indian states were analyzed, and the annual and the seasonal
(monsoonal) apportionment entropy that quantified the temporal distributions of the change
patterns were evaluated. Besides the effects of ENSO, the all-year (century-wide) monsoonal
change patterns were analyzed to determine the effect of each of the monsoonal months on the
long-term patterns. Results suggested that the El Nifo years, compared to the La Nifia and
neutral years, had a much greater influence on the change patterns of the variables. The all-year
monsoonal change patterns suggested a significant decrease in the temperature and PET trends
and shifts across North India, while the precipitation change patterns (both increasing and
decreasing) were found to be region-specific. The entropy analyses suggested that the highest
variation in the long-term change pattern occurred in precipitation data, whereas temperature and

PET experienced more variation during the monsoon season compared to changes over the years.

The fourth and final task examined two research questions: (1) What are the direction and
magnitude of temperature and precipitation trends in the CRB along the last century in the
observed and modeled (CMIP5) gridded datasets? (2) How do the shifts alter the direction and
magnitude of the trends and what are the influences of various types of persistence, e.g., short
and long-term autocorrelation, on the observed and modeled trends? Comparison between
observed and modeled datasets provides a set of qualitative and quantitative metrics to evaluate
the accuracy of the modeled datasets, especially when such modeled datasets are heavily used for
hydro-climatological prediction, such as the CMIP5. Assessment of trends (both in direction and

magnitude) in the observed and modeled datasets can be helpful in correcting the bias (if any) in
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the modeled datasets. Moreover, such trends can highly be influenced by the presence of shifts,
which can alter or moderate an existing trend. An undetected shift may result in a poor
estimation of a trend. Besides, the presence of persistence, i.e., autocorrelation in data, can
overestimate a trend unless it is removed before the application of trend detection tests. Hence,
this study evaluated the effects of SPs and persistence on the trend analyses of the CMIP5
temperature and precipitation models for the entire CRB across 104 years. The obtained results
were compared against the observed CRU-TS datasets. The results showed that the trends in
temperature models were relatively consistent with the observed trends — both in the direction
and magnitude. For both the precipitation datasets, the absence of significant SPs in many of the
grid cells led to incomparable and inconsistent results. The variation in SPs among the adjacent
grid cells was higher in the modeled precipitation and observed temperature data. Both the
temperature datasets showed a higher influence of STP in their detected trends (MK2), while
both the precipitation datasets were highly influenced by the significant autocorrelation

structures of the time series (MK3).

6.2. Contributions

The first task analyzed water year and seasonal trends and shifts (along with their DSs) in
237 unimpaired streamflow stations across the continental U.S. from 1951 to 2012. The
spatiotemporal association between regional streamflow patterns and three large-scale climate
signals were assessed using WTC. Major contributions of this task are: detection of trends and
shifts of the conterminous U.S. streamflow in the original as well as decomposed time series of
the water year and seasonal data using non-parametric statistical tests; determination of
spatiotemporal association between the regional streamflow and large-scale oceanic-atmospheric

climate signals originating from both the Pacific and Atlantic Oceans; testing of data-driven
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models coupled with data pre-processing techniques to predict short-term streamflow behavior;
and evaluation of relative phase relationships (lag-response behavior) among the climate signals
and the regional streamflow across multiple time scales along the study period. This is the first
study in the documented literature that couples trend and shift detection tests with spectral
component (frequency) analyses on a continental scale, and analyzes the change patterns in
association with multiple large-scale climate signals. Such robust analyses may help explain the
physical mechanisms of the oceanic-atmospheric systems that affect the U.S. streamflow. The
results may also be useful in developing forecasting models based on the multi-resolution
associations observed in the study, which may lead to making better water management

decisions.

The second task examined the correlation between ENSO/PDO and the western U.S.
SWE over a study period of 56 years using CWT and its derivatives. Application of such
methods allowed the study to analyze and correlate regional SWE with oceanic-atmospheric
climate indices across multiple timescale bands. Major contributions of this task are: multi-scale
correlational analysis of the western U.S. SWE, both state-wise and hydrologic region-wise, in
response to Pacific Ocean climate signals; and evaluation of relative phase relationships (lag-
response behavior) among the climate signals and the regional western U.S. SWE across
multiple time scales along the study period. The record length used in this study is a major
extension in terms of the number of stations and the length of data analyzed, compared to
previous studies using similar datasets. CWT was used to observe the variability in data, and
XWT and WTC were used to illustrate and quantify, respectively, the high common power
(association) between the representative time series of the variables. Such an approach has not

been used previously with SWE data. This study also compared the association of ENSO/PDO
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across the western U.S. hydrologic regions, which broadened the scope of the study since the

results can be beneficial to regional water managers as well.

In the third task, three hydro-climatological variables, i.e., temperature, precipitation, and
PET, were analyzed over a century-wide data (from 1901 to 2002) to evaluate the influence of
various ENSO phases on the change patterns across North India during the monsoon season.
Trend and shift patterns in 146 districts in eight North Indian states were analyzed, and the
annual and the seasonal (monsoonal) apportionment entropy that quantified the temporal
distributions of the change patterns were evaluated. Besides the effects of ENSO, the all-year
monsoonal change patterns were analyzed to determine the effect of each of the monsoonal
months on the long-term patterns. Major contributions of this study are: evaluation of the long-
term trend and abrupt shift patterns of temperature, precipitation, and PET across north India at
the various ENSO phases using non-parametric statistical tests; determination of the
spatiotemporal relationships between the selected variables during monsoon and at each of the
monsoonal months over a century-wide period; comparison between the major shift points
during monsoon and the phases of ENSO, which might have resulted in extreme events, e.g.,
flood or drought, throughout the study period; and analyses of entropy (apportionment entropy)
to quantify how the detected variations were distributed temporally over the years (annually) and
during the months (seasonally) of monsoon along the study area. Moreover, major physical and
dynamic relationships affecting the monsoon season due to the change in ENSO phases in the
Indian subcontinent were compiled and discussed in this task based on an extensive literature
review. The obtained results may help practitioners to prepare for flood and drought risks as a

response to the changes in ENSO phases.
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The final task evaluated the effects of SPs and persistence on the trend analyses of the
CMIPS temperature and precipitation models for the entire CRB across 104 years. The obtained
results were compared against the observed CRU-TS datasets. The major contributions of this
task are: adoption of a shift-trend approach where the direction and magnitude of the trends are
evaluated independently before and after significant shift points for both the modeled and
observed datasets; a thorough examination of the effect of persistence not only for the trend tests
but also for the detection of shift points; and determination of the inconsistencies detected
between the CMIPS5 and observed datasets — under the influence of shift points and persistence.
This task detected certain biases in the CMIPS models in detecting the SPs (tendency of
detecting shifts earlier or later than the observed shifts) and also in quantifying the trends
(overestimating the trend slopes) — such insights may be helpful in evaluating the efficacy of the

simulation models in capturing observed trends under uncertainties and natural variabilities.

6.3. Limitations

Though all the tasks attempted to take a robust approach when it came to formulating the
underlying research basis and in selecting and designing the appropriate methods to analyze the
data, certain limitations were still unavoidable. Data availability restricted the first task to
analyze with high certainty (or adequate resolution) beyond DS8 for DWT and beyond CS16 for
WTC. Hence, associating streamflow variations with climate signals having multidecadal
frequency components was not possible in this task. Moreover, not all the hydrologic regions had
a sufficient number of stations within them to provide an explanation of the regional change

pattern.
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Similar to the first task, since the second task analyzed timescales up to the 16-year band
only, significant intervals at higher timescales may have been missed. This task also did not
analyze beyond the 16-year band since the results beyond this band had high uncertainty due to
the limitation of the length of the period of record. Analyzing a longer-reconstructed time series

may allow evaluating the associations at higher timescales with greater certainty.

For the third task, the relationships obtained and the trends detected were purely based on
the analyses of obtained data — which are in many cases subject to collection and calibration
error (especially for the regions outside the U.S.). Even though the obtained results were
compared against some of the studies concerning with the major physical and dynamic factors
affecting the monsoon season, none of those factors were directly considered in the study. Other
variables, which may affect the Indian monsoon, e.g., wind direction and velocity, heat fluxes
over land masses, and coupling of multiple climate signals originating from different oceans,

were not considered in the study.

In the fourth task, the uncertainties related to large-scale climate variability were not
considered while comparing the modeled and observed distributions. Besides, among the many
ensemble members of the CMIP5 simulation models, only the first ensemble members from each
model were tested. The inclusion of multiple ensemble members could be a task for future
research. Moreover, comparisons were only made between the modeled and observed datasets of
the CRB — other hydrologic regions may not show similar associations and biases in the modeled

datasets under uncertainties.

Finally, the results reported are statistical in nature; hence, in some cases, the detected

relationships or the evaluated change patterns may be counter-intuitive. The outcomes of
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statistical tests are helpful in understating the relationships. However, one must be cautious while
interpreting the results, as outcomes from statistical tests can on occasion produce a Type | ‘false

positive’ error, depending on the chosen level of significance.

6.4. Recommendations for future work

The primary objective of the work presented in this dissertation was to evaluate the
change patterns, i.e., a gradual change known as the trend, and an abrupt change known as the
shift, of multiple hydro-climatological variables, namely, streamflow, SWE, temperature,
precipitation, and PET, in association with the large-scale oceanic-atmospheric climate signals,
1.e., ENSO, PDO, and AMO. Moreover, both observed datasets and modeled simulations were
used to evaluate such change patterns to assess the efficacy of the modeled datasets in emulating
the observed trends and shifts under the influence of uncertainties and inconsistencies. A
secondary objective of this study was to utilize the detected change patterns in designing data-
driven prediction models, e.g., ANN, SVM, and GPR, coupled with data pre-processing
techniques, e.g., PCA and WT. However, there are a few aspects of the study that could be
improved for greater validity in the results or to apply the results in future work. Future
extension or replication of similar techniques should consider the following improvement

opportunities:

e For both the first and the second tasks, decomposing to higher SBs can be helpful in
associating streamflow or SWE variations with climate signals having multidecadal
frequency components. In addition, working with a higher number of stations with longer

records may provide a better explanation of the regional change patterns.
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e Application of data-driven models coupled with data pre-processing techniques could be
replicated for other regions and with different hydro-climatological variables to test the
effectiveness of the methods, algorithms, and model architectures.

e For the third task, other factors, which may affect the Indian monsoon, e.g., wind
direction and velocity, heat fluxes over land masses, and coupling of multiple climate
signals originating from different oceans, could be considered to increase confidence in
the obtained relationships.

e For the fourth task, future studies may look into the uncertainties related to large-scale
climate variability and the modeled distributions. The inclusion of multiple ensemble
members could be a task for research. Comparing the results with adjacent hydrologic
basins may provide important insights regarding other possible biases in the CMIP5
models.

e The detected associations among the climate signals and multiple hydro-climatological
variables can be evaluated and/or simulated with physically-based or pseudo-physically-
based models to understand the underlying mechanisms with higher precision.

e As all the results reported in these tasks are statistical in nature and are based completely
on the quality of the obtained data and the accuracy of the methods used in the respective
tasks, any extension in terms of data availability, and/or modification of test methods for a

more robust and comprehensive analysis is always a future prospect of research.
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APPENDICES

Appendix 1

Chapter 1 has no additional/supplementary material.

Appendix 2.A

The original water-year and seasonal data were decomposed into a set of relatively
simpler subseries known as approximation coefficients (AC) and detail coefficients (DC) by
putting them through a low pass and high pass filter, respectively. The resulting subseries
corresponded to the lower frequencies and higher frequencies of the original time series. At each
decomposition level, the resulting DC corresponded to the lower DS, while the resulting AC was
further decomposed to obtain a new set of DC and AC. This process was continued until the ACs
produced a sufficient resolution (certainty). Three DSs, named as DS2, DS4, and DS8
represented the time-series data at the SBs of two, four, and eight years, respectively. Based on
the literature cited in the main text, the SBs were obtained at every 2" scale, where n is the
decomposition level with an initial value of n = 1.0. Hence, two, four, and eight years
corresponded to the first three decomposition levels for this study. Figure 2.1 (right) shows that
after three decompositions, the time series associated with the third AC hardly showed any
presence of periodic behavior. In other words, the resolution or the amount of certainty in the
wavelet time-frequency spectrum diminished as the decomposition levels (DSs) went higher.
Readers may also refer to Karthikeyan and Nagesh Kumar (2013) for more explanations

regarding wavelet approximations and details.
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Appendix 2.B

Table A2.B 1: Number of stations with significant positive (Pos.) and negative (Neg.) trends under the Mann-

Kendall (MK) test in water-year and seasonal data along with their decompositions.

Number of Stations with Significant Trends
Time-series Original DS2 DS4 DS8
Data Pos. (Neg.) Pos. (Neg.) Pos. (Neg.) Pos. (Neg.)
Water year 46 (11) 69 (17) 93 (31) 93 (46)
Fall 67 (9) 97 (12) 126 (29) 134 (36)
Winter 52(9) 62 (31) 87 (28) 83 (40)
Spring 28 (25) 40 (39) 55 (47) 66 (71)
Summer 39 (20) 62 (32) 76 (32) 82 (45)

Table A2.B 2: Number of stations with significant positive (Pos.) and negative (Neg.) shifts under the Pettitt’s test

in water year and seasonal data along with their decompositions.

Number of Stations with Significant Shifts
Time-series Original DS2 DS4 DS8
Data Pos. (Neg.) Pos. (Neg.) Pos. (Neg.) Pos. (Neg.)
Water year 77 (23) 93 (41) 136 (63) 150 (72)
Fall 105 (12) 120 (14) 151 (45) 174 (60)
Winter 68 (36) 76 (54) 110 (57) 126 (74)
Spring 36 (40) 49 (61) 77 (90) 100 (106)
Summer 55(35) 73 (50) 112 (61) 147 (66)
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Appendix 2.C

The spatial pattern of trends was more irregular with the seasons when compared to the
water year trends. Nevertheless, seasons showed the presence of spatial coherence or region-
specific trends (Figure A2.C1). In fall and its DSs, positive trends were mostly observed in the
northeastern regions, whereas negative trends were prevalent in the northwestern regions (Figure
A2.C1). Trends located on the extreme east and west regions, i.e., NE, MA, and PN, showed a
higher rate of increase in the number of stations with trends compared to the central regions as
the DSs went higher. Consequently, regions with field significance also increased as the DSs
went higher. During winter and its DSs, besides the northwestern regions, negative trends were
also observed in some of the mid-eastern regions, while positive trends mostly were located in
the northeastern and central regions (Figure A2.C1). The increase in the number of stations with
trends was observed to be higher in the western regions, i.e., PN and CA, compared to the
eastern and central regions as the DSs went higher. At DS4 and DSS8, all the regions showed field

significance.

In spring and its DSs, stations with trends showed quite a different pattern when
compared to the other seasons. Stations with negative trends were found in the eastern regions;
such trends were almost absent during the other seasons (except for a few stations during winter)
(Figure A2.C1). With the increase in DSs, NE, MA, SAG, PN, and CA showed a higher increase
in negative trends compared to the other regions, while the central regions showed an increase in
stations with positive trends. In summer and its DSs, stations with positive trends mostly were
located in the northeastern and north-central regions, while negative trends were prevalent in the
northwestern regions (Figure A2.C1). Eastern regions, e.g., NE, MA, and OH, showed the

maximum increase in stations with positive trends, while the increase in negative trends was
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found to be the highest in PN as the DSs went higher. In both spring and summer, with the

increase in DSs, more regions showed field significance.

Stations with shifts during the seasons (Figure A2.C2) followed similar patterns as the
trends during the seasons. In fall and its DSs, positive shifts were found in the northeastern
regions, while negative shifts were located in the western regions (Figure A2.C2). The increase
in stations with negative shifts was higher in the western regions, e.g., PN; while stations with
positive shifts were observed to increase in the eastern regions, e.g., NE and MA. All the regions
showed field significance in DS4 and DSS. In winter and its DSs, negative shifts were observed
in the southeastern regions, which were not present in fall, while positive shifts were located in
the northeastern and central regions (Figure A2.C2). The rate of increase in the number of
stations with negative shifts was higher compared to the rate of increase in stations with positive
shifts as the DSs went higher. The majority of the stations with negative shifts were located in
SAG and PN, while stations with positive shifts were more spatially dispersed across the regions
with a higher concentration in the eastern regions, i.e., NE and MA. Similar to fall, all the

regions showed field significance in DS4 and DSS.
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In spring and its DSs, negative shifts were observed in the eastern and northwestern
regions, while positive shifts were found in the north-central regions (Figure A2.C2). The results
show that similar to fall and winter, with the increase in DSs, stations with significant shifts also
increased. A high concentration of stations with negative shifts was observed in NE, SAG, GL,
and PN. MA, OH, and UMS showed a high concentration of stations with positive shifts. The
number of regions with field significance was fewer compared to fall and winter in the lower
DSs. However, all the regions showed field significance in DS8. In summer and its DSs, positive
shifts were observed in the northeastern regions, while negative shifts were predominant in the
northwestern regions (Figure A2.C2). The number of stations with negative shifts showed a
much higher increase in PN, while positive shifts increased in NE and MA as the DSs increased.

Similar to spring, all the regions were found to be field significant in DSS.
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Appendix 2.D

The number of stations with significant shifts during the study period in water year and
its DSs is shown in Figure A2.D1. A higher number of stations with shifts were found from the
1960s to 1980s in all the time series. The results showed that the location in time and direction of
the shifts varied across the DSs. DS2 and DS4 showed similarity in their shifts distributions,
while DS8 showed an oscillatory alternating reverse pattern — a series of years with positive
shifts followed by a series of years with negative shifts. Moreover, in DS2 and DS4, there were
instances where both directional shifts occurred in the same year, which was rarely observed in

the original water year and DS8.

As seen in Figure A2.D1, the occurrence of shifts showed an oscillating tendency in the
higher SBs, especially in DS8. As a result, the shift years were compared against the years
associated with the coupled phases of the climate signals, i.e., ENSO, PDO, and AMO, to detect
their concurrency during the study period, since climate signals also show oscillating trends.
Both the ENSO (EI Nifio and La Nifia) phases were compared against the PDO (warm or cold)
and AMO (positive or negative) phases to observe their coupled effects on the regional
streamflow. The majority of the stations with shifts that coincided with the PDO cold years were
found to shift during the La Nifia years (Figure A2.D2). Both positive and negative shifts were
found during the La Nifa years, while only positive shifts were found during the El Nifio years.
During the PDO warm years, both positive and negative shifts were observed during the El Nifio
and La Nifia years, though the number of stations with significant shifts was much less when
compared to the PDO cold years. The remaining stations with shifts were spread out across the

study area without any visible spatial pattern.
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Figure A2.D 1: Number of stations with significant shifts in water year and its DSs. Blue (red) bars indicate positive

(negative) shifts. Blue (red) lines represent the 2-year-moving-average trend lines for positive (negative) shifts.

During the AMO positive (warm) years, positive shifts were more prevalent compared to
negative shifts (Figure A2.D2). Also, the majority of the stations during the AMO warm years
coincided with the El Nifio years across the continental US, while only one station coincided
with a La Nifia year. A few stations were found not to coincide neither with the El Nifio nor the

La Nina years, but no pattern was observed among them. During the AMO negative (cold) years,
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both positive and negative shifts were observed across the US, with the majority of the stations
coinciding with the La Nifia years. Similar to the AMO warm years, a few stations were found to
coincide neither with the El Nifio nor the La Nifia years. The comparison of PDO and AMO
phases showed similar locations of stations with shifts — the similarity was found to be higher

during their cold phases.

Figure A2.D2 shows that NE, MA, GL, OH, UMS, SRR, MO, and PN had a significant
number of stations with shifts at one or more of the coupled phases of the climate signals, i.e., El
Nifio/La Nifia phase during PDO warm/cold years, and/or El Nifio/La Nifia phase during AMO
positive/negative years. All these regions also showed field significance during the DSs of the
water year (Figure 2.2). The concept of CWT was applied to evaluate the variance of these
regions’ streamflow and the climate signals across multiple CSs. The first principal component
(PC1), obtained from the principal component analysis (PCA) of all the stations in a region, was
used to represent the regional streamflow time series. Table A2.D1 lists the percentage of
variability explained by the PC1 from the PCA analysis for each region. The CWTs explained
how these individual time series have varied over time across the CSs (Figures A2.D3 and

A2.D4), where the higher power in the wavelet power spectrum represents higher variability.
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Figure A2.D 2: (1* row) Location of stations with significant shifts coinciding with the PDO warm (left) and cold
(right) years, in conjunction with the ENSO (El Nifio or La Nifia) years. (2" row) Location of stations with
significant shifts coinciding with the AMO warm (left) and cold (right) years, in conjunction with the ENSO (EIl
Nifio or La Nifia) years. Upward (downward) pointing triangles indicate positive (negative) shifts. The blue and red

shades indicate the increasing and decreasing slope of trends, respectively.
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Table A2.D 1: Percentage of variance explained by the first principal component (PC1) obtained from the principal

component analysis (PCA) of the selected regions.

Hydrologic Region Name 01:; tI: 23;5 Varianc;;t;l(::ii?clfixplained
New England (NE) 18 87.62%
Mid-Atlantic (MA) 39 71.29%

Great Lakes (GL) 10 67.03%
Ohio (OH) 20 64.96%
Upper Mississippi (UMS) 19 67.05%
Souris-Red-Rainy (SRR) 3 86.79%
Missouri (MO) 21 66.41%
Pacific Northwest (PN) 37 80.22%

The CWTs of the climate signals revealed that each of them experienced higher variance

at different CSs during various time intervals. The highest significant variance for ENSO was

observed in CS4 to CS8 between 1980 and 1990 (Figure A2.D3). For PDO, the highest

significant variance was observed in CS8 to CS12 from 1995 to 2005. For AMO, there was a

higher variance after CS16 but it was not found to be statistically significant. The highest

significant variance for AMO was found below CS4. The global wavelet spectra for each of the

climate signals also showed similar higher power as was observed in their wavelet power

spectra. The three-to-six-year-scale-average for each of the climate signals showed their periodic

nature over the study period (Figure A2.D3).
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The results showed that ENSO had a much better-defined periodicity, which was less
than a decade, compared to PDO and AMO. For PDO, there was no definite periodicity during
the study period. Though AMO showed cyclic behavior, the periodicity varied from a decade to

more than a decade over the study period.

The CWTs of the regional streamflow showed significant variation among them (Figure
A2.D4). There was a definite presence of higher variance after 1970 for the majority of the
regions, though the ranges of CSs varied. From the global wavelet spectra, it was observed that
the majority of the regions experienced higher variance in CS8 to CS16. Higher variance beyond
CS16 was also observed for certain regions. All the regions, except for MO, had more than one

significant zone of noticeable duration (Figure A2.D4).
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Appendix 2.E

(a)
Scatter Plot 3D Projections Individual and Cumulative % of Variance
(First Three Principal Components) (First Three Principal Components) Explained by the Principal Components
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Figure A2.E 1: Principal component analyses (PCA) of the (a) Mid-Atlantic (MA), (b) Missouri (MO), and (¢)
Pacific Northwest (PN) region. (Left) The 3D plots show the first three principal components and their projections.
(Right) Plots showing percentage of individual and cumulative variance explained by the principal components. For
MA, MO, and PN, the number of principal components explaining more than 95% of the variability was 11, 12, and
11, respectively, out of the total 16 possible inputs.
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Figure A2.E 5: Model fitting (training and validation) of the K-fold cross-validation (5 folds as shown in a through

e) for the Mid-Atlantic (MA) region.
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Figure A2.E 6: Error histogram (training and validation) of the K-fold cross-validation (5 folds as shown in a

through e) for the Mid-Atlantic (MA) region.
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Figure A2.E 7: Best validation performance (training and validation) of the K-fold cross-validation (5 folds as

shown in a through e) for the Mid-Atlantic (MA) region.
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Figure A2.E 10: Best validation performance (training and validation) of the K-fold cross-validation (5 folds as
shown in a through e) for the Missouri (MO) region.
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Figure A2.E 11: Model fitting (training and validation) of the K-fold cross-validation (5 folds as shown in a through

e) for the Pacific Northwest (PN) region.
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Figure A2.E 12: Error histogram (training and validation) of the K-fold cross-validation (5 folds as shown in a

through e) for the Pacific Northwest (PN) region.
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shown in a through e) for the Pacific Northwest (PN) region.
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Table A2.E 4: Comparison of various learning algorithms during the testing phase (unseen data) for the Mid-

Atlantic (MA) region.
Group Training Function - Learning Algorithm R? RMSE
1.0 Backpropagation training function with Jacobian derivative
1.1 | trainbr - Bayesian Regularization backpropagation 0.9786 | 0.0864
1.2 | trainlm - Levenberg-Marquardt backpropagation 0.9565 0.1231
2.0 Backpropagation training function with gradient derivative
2.1 | trainbfg - BFGS quasi-Newton backpropagation 0.9565 0.1231
2.2 | traincgb - Conjugate gradient backpropagation with Powell-Beale restarts 0.9645 0.1112
2.3 | traincgf - Conjugate gradient backpropagation with Fletcher-Reeves updates | 0.9662 | 0.1085
2.4 | traincgp - Conjugate gradient backpropagation with Polak-Ribiere updates 0.9643 0.1115
2.5 | traingd - Gradient descent backpropagation 0.5940 | 0.3761
2.6 | traingda - Gradient descent with adaptive Ir backpropagation 0.9306 | 0.1555
2.7 | traingdm - Gradient descent with momentum B B
2.8 | traingdx - Gradient descent w/momentum & adaptive Ir backpropagation B B
2.9 | trainoss - One step secant backpropagation 0.9741 0.0950
2.10 | trainrp - RPROP backpropagation 0.7169 | 0.3140
2.11 | trainscg - Scaled conjugate gradient backpropagation 0.9588 | 0.1198
3.0 Supervise weight/bias training functions
3.1 | trainb - Batch training with weight & bias learning rules _ _
3.2 | trainc - Cyclical order weight/bias training 0.9646 | 0.1111
3.3 | trainr - Random order weight/bias training 0.8952 | 0.1911
3.4 | trains - Sequential order weight/bias training 0.8451 0.2323
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Table A2.E 5: Comparison of various learning algorithms during the testing phase (unseen data) for the Missouri

(MO) region.

Group Training Function - Learning Algorithm R? RMSE

1.0 Backpropagation training function with Jacobian derivative
1.1 | trainbr - Bayesian Regularization backpropagation 0.9891 | 0.0441
1.2 | trainlm - Levenberg-Marquardt backpropagation 0.8986 | 0.1344

2.0 Backpropagation training function with gradient derivative
2.1 | trainbfg - BFGS quasi-Newton backpropagation 0.8854 | 0.1429
2.2 | traincgb - Conjugate gradient backpropagation with Powell-Beale restarts 0.8849 | 0.1432
2.3 | traincgf - Conjugate gradient backpropagation with Fletcher-Reeves updates | 0.8883 | 0.1411
2.4 | traincgp - Conjugate gradient backpropagation with Polak-Ribiere updates 0.8670 | 0.1539
2.5 | traingd - Gradient descent backpropagation 0.7016 | 0.2306
2.6 | traingda - Gradient descent with adaptive Ir backpropagation 0.8219 | 0.1781
2.7 | traingdm - Gradient descent with momentum 0.7034 | 0.2299
2.8 | traingdx - Gradient descent w/momentum & adaptive Ir backpropagation 0.8652 | 0.1550
2.9 | trainoss - One step secant backpropagation 0.8869 | 0.1419
2.10 | trainrp - RPROP backpropagation 0.8272 | 0.1755
2.11 | trainscg - Scaled conjugate gradient backpropagation 0.8892 | 0.1405

3.0 Supervise weight/bias training functions

3.1 | trainb - Batch training with weight & bias learning rules 0.7034 | 0.2299
3.2 | trainc - Cyclical order weight/bias training 0.8756 | 0.1489
3.3 | trainr - Random order weight/bias training 0.6622 | 0.2453
34 | trains - Sequential order weight/bias training 0.7234 | 0.2220
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Table A2.E 6: Comparison of various learning algorithms during the testing phase (unseen data) for the Pacific

Northwest (PN) region.
Group Training Function - Learning Algorithm R? RMSE

1.0 Backpropagation training function with Jacobian derivative
1.1 trainbr - Bayesian Regularization backpropagation 0.8960 0.1242
1.2 trainlm - Levenberg-Marquardt backpropagation 0.8518 0.1483

2.0 Backpropagation training function with gradient derivative
2.1 trainbfg - BFGS quasi-Newton backpropagation 0.8670 0.1405
2.2 | traincgb - Conjugate gradient backpropagation with Powell-Beale restarts 0.8853 0.1305
23 traincgf - Conjugate gradient backpropagation with Fletcher-Reeves updates | 0.8311 0.1583
2.4 | traincgp - Conjugate gradient backpropagation with Polak-Ribiere updates 0.9039 0.1194
2.5 traingd - Gradient descent backpropagation B _
2.6 | traingda - Gradient descent with adaptive Ir backpropagation B B
2.7 traingdm - Gradient descent with momentum B B
2.8 traingdx - Gradient descent w/momentum & adaptive Ir backpropagation B B
2.9 | trainoss - One step secant backpropagation B B
2.10 | trainrp - RPROP backpropagation 0.8175 0.1646
2.11 | trainscg - Scaled conjugate gradient backpropagation 0.6274 0.2351

3.0 Supervise weight/bias training functions
3.1 trainb - Batch training with weight & bias learning rules _ _
3.2 | trainc - Cyclical order weight/bias training 0.9052 0.1186
33 trainr - Random order weight/bias training _ _
34 | trains - Sequential order weight/bias training _ _

Appendix 3

Chapter 3 has no additional/supplementary material.
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Appendix 5

Table AS. 1: List of CMIP5 temperature and precipitation models used in the study.

169

CMIP5 Temperature Models CMIPS Precipitation Models

1 | ACCESS1-0 1 | bee-csml-1

2 | bee-csml-1 2 | CanESM2

3 | CanESM2 3 | CCSM4

4 | CCSM4 4 | CESMI1-CAMS
5 | CESM1-CAMS 5 | CNRM-CM5

6 | CNRM-CMS5 6 | CSIRO-Mk3-6-0
7 | CSIRO-Mk3-6-0 7 | GFDL-CM3

8 | GFDL-CM3 8 | GFDL-ESM2G
9 | GFDL-ESM2G 9 | GFDL-ESM2M
10 | GFDL-ESM2M 10 | GISS-E2-H

11 | GISS-E2-H 11 | GISS-E2-R

12 | GISS-E2-R 12 | HadCM3

13 | HadCM3 13 | HadGEM2-CC
14 | HadGEM2-CC 14 | HadGEM2-ES
15 | HadGEM2-ES 15 | inmecm4

16 | inmcm4 16 | IPSL-CM5A-LR
17 | IPSL-CM5A-LR 17 | IPSL-CM5A-MR
18 | IPSL-CM5A-MR 18 | MIROCS

19 | MIROC5 19 | MIROC-ESM
20 | MIROC-ESM 20 | MPI-ESM-LR
21 | MPI-ESM-LR 21 | MRI-CGCM3
22 | MRI-CGCM3 22 | NorESMI-M
23 | NorESMI-M 23 | MRI-ESMI
24 | ACCESSI1-3 24 | NorESM1-ME
25 | CESM1-BGC 25 | MPI-ESM-MR
26 | CESMI-FASTCHEM
27 | CESMI-WACCM
28 | CMCC-CESM
29 | CMCC-CM
30 | CMCC-CMS
31 | CNRM-CM5-2
32 | FGOALS-s2
33 | GFDL-CM2pl
34 | GISS-E2-H-CC
35 | GISS-E2-R-CC
36 | HadGEM2-AO
37 | IPSL-CM5B-LR
38 | MIROC-ESM-CHEM
39 | MPL-ESM-P
40 | MRI-ESM1
41 | NorESMI1-ME
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